Abstracts of Scientific Sessions — 2023 AALAS National Meeting

Contents

Animal Welfare, Training, and 3Rs

P100 Creating a Corporate Compassion Fatigue Awareness Program through a Preventative Medicine Approach
D O’Connell*, C Allen, L Holzwarth

P101 Learning from Reported Critical Incidents to Develop a Culture of Care for Animal and Human Wellbeing
SJ Bischoff*, A Enkelmann

P102 Implementation of online training for the promotion of well-being in laboratory animal personnel
N Celeste*, M Huss

P103 The Lesser Known Benefits of Laboratory Animal Enrichment Programs
JA McGrath*, A Brown, E Becerra, A Ostdiek, D Mailhiot

P104 How are Apples and Oranges weighed in practice? On the incoherent implementation of the Harm-Benefit-Analysis as a requirement of the EU Directive 2010/63/EU.
D Hajosi*, H Grimm

P105 Tail Dosing and Bleeding Revisited: Toppling 35 Years of Dogma
A Xue*, D Wagner, G Zhang, E Gosselin, N Johnson, R Kastenmayer, E Gangl

P106 Cisterna Magna Ports in Rhesus Monkeys Then and Now
BE Smith*, DB Gilberto, HA Corcoran, GR Sitko, JM Beech, JA Werner, JL Hughes, WE Smallridge, LK Handt, TL Gray, SL Motzel

P107 Where the Honeysuckle Grows...Utilizing Browse in Nonhuman Primate Enrichment Programs
E Dougher

P108 Colla-boar-ation: Teaching Chronic Surgical Pigs to Participate in Their Own Care With Use of PRT
MM Abbatello*, A Hines, P Gordnier

P109 Reducing the use of live animals in training by building cost efficient and realistic feeling venipuncture training aids.
AJ Grey*, MB Behnke

P110 Moving up: Evaluation of space orientation on the progression of cynomolgus macaques through a training protocol
BN Gaskill*, M Burns, G Andrews-Kelly

P111 Fostering Culture of Care Through Continuous Learning and Improvement
K Bell*, L Sheldrake, J Harrington, T Edstrom, S Albery Larsdotter, S Kuester*, R Mason, D Pao

P112 Training Validation and Staff Incentivization, A Plan to Keep Your Staff Happy and on Track
EC Brooks*, M Weiss, J Hickman-Davis, V Bergdall

P113 Thinking Inside the Box: Restraint chair enhancements utilized in transitioning toxicology studies from open to closed restraint chairs.
M Page*, C Ferrecchia, M Nevor

P114 Surveying IACUC Members on Ethical Deliberation and the Label ‘Ethics Committee’
M Rassette
P130 Easing Compassion Fatigue
S Oldham*, K Bell1, K Nace1, E Straley1, L Sheldrake1, G Harkins2, A DeSantis2, R Kastenmayer1

P131 Novel Enrichment Devices for Pregnant Ewes and Lambs
S Stephens3, O Hughes, M Dapare, CM Doerning

P132 Evaluation of abnormal behaviors in two singly housed macaques pre- and post-social introduction: A case study
M Vogel1, K Thurman, A Sorrells

P133 Managing Social Contact for Macaques on Infectious Disease Projects
JP Thom1, RU Bellanca1, SW Lee1, GH Lee1, V Nelson2

P134 A practical approach to the assessment of mouse enrichment types in a large research program
JN Camacho1, W Chan

P135 Implementing Desensitization as Part of Rat Toxicology Studies
C Richard1, T McShane

P136 Fully Automated Micromanipulation: Genetic Modification of Mice by Automated Solution Injection
T Eto1, H Ueda2, R Itou1, T Takahashi1, T Watanabe1,2, M Goto1, Y Sotomaru1, N Tanaka2, R Takahashi1

P137 Modified Rabbit Sling for Forelimb Orthopedic Procedures
JM Collins1, L Bird

P138 A Spotlight on Rodent Enrichments Role in Openness, Transparency and Culture of Care
M Gerhardt1, K Greatsinger, H Whiles, J Arnold, J Cooney-Walsh

P139 Implementing the 3Rs by Establishing a Training Rabbit Colony
K Harringer1, R Hudson2, AK Darbyshire1,3

P140 Novel Method for Repairing Female Rabbits After Two Week Separation
A Napolitano1, M Muniz, P Shipkova, F Landry, D Shuster, R Donocoff

P141 Current Demographic Makeup of IACUC Members in the United States
M Rassette1

P142 Institutional Officials Consortium (IOC): An Industry Consortium for Collaboration in Animal Welfare, the 3Rs, and Openness about Biomedical Research
JL Lofgren*, A Myers*, M Burns1, J Polling3, D O’Connell4, C Winnicker5

P143 Refining Rat Management Programs Through Stakeholder Focus Groups
C O’Malley1,3, PV Turner2

P144 Tunnel Handling Mice Has Minimal Impact on Cage Change and Cage Wash Time
H Arnott1, K Wood, K Snead, J David, L Garcia Menendez

P145 Comparison of Plastic and Metal Oral Gavage Needles in C57BL/6 Mice
J Herrod1, J Maye1, I Kim1, CC Vernon2, L Healy2, L Bates2, LM Stanislawczyk2, M Sowick2

P146 Refinements in Rabbit Cage Change Procedure
A Napolitano1, M Muniz, P Shipkova, F Landry, D Shuster, R Donocoff

P147 Assessing Stress Impact and Subcutaneous Dosing Effectiveness of a Scruffing Restraint Device in C57BL/6J Female Mice
KE Benjamin1, J Dunbar2, H Kim2

P148 Training Rats to Voluntarily Change Cages Using a Tilt Technique
CA Payne1, LV Kendall2, JK Willis1

P149 Use of Colony Metrics to Reduce Excess Animal Production in a Dynamic Biotechnology Environment
R Kyauk1, S Masoud1, K Gilland2, C Chan3

Clinical

P200 Feeding Patterns of Infant and Juvenile Rhesus Macaques (Macaca Mulatta) Living in Large Outdoor Captive Breeding Groups
K Bagley1, J Ramsey, K Ethun

P201 Jaundice And Hepatic Necrosis in Axolotls (Ambystoma Mexicanum)
B Varian1, Y Lee, EB Jordan, N Parry, S Erdman, A Garcia

P202 Canine Distemper Outbreak in Commercial Ferret Population in 2022
CA Johnson-Delaney1,2

P203 A Novel Method of Health Monitoring in Laboratory Zebras
AK Darbyshire1,3, V Johnson1, A Horvath1, A Leon

P204 Evaluation of Live Insect Feed as a Potential Pathogen Source in an SPF Rodent Facility
S Johnson1, R Erickson

P205 Comparison of Butorphanol-Azaperone-Medetomidine with Telazol-Zolazepam-Xylazine For Sedation of Pigs (Sus Scrofa Domesticus)
A Bernardini1, WR Williams2

P206 Clinical Management of Complications Secondary to Experimental Administration of Doxorubicin in Swine
S Beechy1, A Slate1, I Gertsenshteyn1, F Bijari2, M Dhaynaut2, S Moon2, M Macdonald-Soccorsio2, H Deng3, A Macdonagh2, A van Kampen1, G Goudot4, R Woodcock4, M Yaghoubian5, N Alpert2, M Normandin2, G El Fakhri2

P207 Management of Fur Mites (Radfordia lemnina) in California Deer Mice (Peromyscus californicus)
VM Capria2,1, C Freed

P208 Presumptive Methyl Methacrylate Toxicity in a Cohort of Northern Tree Shrews (Tupaia belangeri) with Cranial Implants
S Achilles1, J Foote2, R Grytz2, DE Collins1

P209 The Chinchilla Consortium: A Chinchilla Clinical Case Report Gold Mine
AK Darbyshire1, RA Malbrue2, CB Arsuaga-Zorrilla2, A Osborne3, DL Dobek4, J Xu4, M Dunbar1, DL Fong1, LM Habenicht6, MK Fink1, ER Feldman7, GA Jackson1, L Birdwell8, EL Mitchell9, M Ortega9, WR Williams3, C Cain10, A Moffitt11, M Williams-Fritze2, C Manuel1

P210 Treatment of Spypacia Obvelata in a Prairie Vole (Microtus ochrogaster) Colony without Breeding Cessation
K Shrum-Hammer1, MM Walker1, J Hurd2, E McCullagh2, AB Wathen1
P211 Waterhouse-Friderichsen Syndrome and Acute Death in a Post-Operative Piglet (Sus scrofa domestica)
C Morrill, JG Vilehes-Moure

P212 Selera-embedded Search Coils: Removal Complication and Successful Treatment
EQ Zhang, R Tierce, K Wharton

P213 Ferret Kit Revival Following Natural Parturition and Hysterectomy
HI Saleh, RA Ober, AJ McLuckie

P214 Novel Restraint Method for Topical Treatment of California Deer Mice (Peromyscus californicus)
VM Capria, C Freed

P215 Polyglucosan Body-Associated Cardiomyopathy in New Zealand White Rabbits: A Case Series
LH Streb, EA Ihms, R Gruenwald, CV Löhö, J-L Sargent, T Polley, AG Armien, P Srichoonyaparin

P216 Multimodal Anesthetic and Analgesic Regimen for Laparotomy in Pregnant Ferrets
MM Granko, AJ McLuckie, RA Ober

P217 Novel Pancreatic Neoplasm in a Female Zebrafish
AR Guy, I Sidor, SE Woodsi, Jii

P218 Prolonged Analgesic Regimen for Intramuscular Injection Associated Myositis in C57BL/6JN Mice
DS Tu, SB Brabb, JJ Klug

P219 Tail Necrosis Following Jugular Cannulation in Rats Associated with Inadequate Thermal Support
J Kincer, N Caudill, B Newcomb, K Zamiar, T Anderson, P Ortinski

P220 Infiltrative Lipoma in a Zebra Finch (Taeniopygia guttata)
K Salleng, SI Gografe

P221 Topical Fluralaner to Treat Chicken Body Lice (Menacanthus stramineus) in a Biomedical Research Setting
E Godollei-Jacob, MM Granko, LH Streb, T Huynh, S Chik, J Pang, MB Pollak, I Sidor, MA Culver

P222 An Unusual Outcome Secondary to Indwelling Intrathecal Catheterization in a Rhesus Macaque (Macaca mulatta)
Y Gonzalez-Rodriguez, A Duggan, K LaVallee, D Caudell, M Leblanc

P223 Enhanced Surgical Site Infection Prevention Protocols Improve Outcomes in Swine (sus scrofa domestica)
C Brown, K Patil, T Garcia, R Utheamthil

P224 Diagnosis & Treatment of Dermatophytosis in a Gottingen Minipig
A D’Amario, A Merley

P225 Zinc Concentrations in Laboratory Society Finches (Lonchura striata domestica) and Enrichment Items
LC Achille, P Jowett, E Sasaki, N Falconnier, F Del Piero, C Gergy

P226 Ophiomyssus natricis Infestation in a Laboratory Hatchling Corn Snake (Pantherophis guttatus)
LC Achille, W Hanson

P227 Malignant Sertoli Cell Tumor with Pulmonary Metastasis Originating from Cryptorchidism in Common Marmoset
M Yasuda, M Mochizuki, Y Kamai, K Kawai

P228 Diet-Associated Dermatitis in a Swine Model of Nonalcoholic Steatohepatitis
J-M Lawrence, P Felgendreff, JF Jacobs, MC Rahe, S Nyberg, FD Duke Boynton

P229 Cynomolgus Macaque (Macaca fascicularis) Imported to the United States from Cambodia with Melioidosis
LL Ramos, PM Hidalgo

P230 Pharmacokinetic Study of Subcutaneous Buprenorphine Administration in the Jamaican Fruit Bat (Artibeus jamaicensis)
B McKenna, H Weaver, H Knych, J Ayers, LV Kendall

P231 Comparison of the Fecal Microbiota of Spiny Mice (Acomys spp) by Sex and Diabetic Status
N Compo, A-Cruz Ramirez, S Comparini, RW Engelmann

P232 Normal Serum Chemistry Reference Ranges for the Jamaican Fruit Bat (Artibeus jamaicensis)
J Pang, AR Moore, AJ Cummings, K Bukovec, J Scumaci, C Lovelace, B Singh, S Thomas, MB Pollak, J Ayers, LV Kendall

P233 Suspect Mucoid Enteropathy Outbreak in New Zealand White Rabbits
M Pollak, K Bukovec, S Thomas, B Singh, J Pang, LV Kendall, J Ayers

P234 Optimization of Intraarticular Administration in Rabbits Using Fluoroscopic Guidance
LD Bos, N Mohr, E Taylor, L Wood, J Justen, A Petticoffer

P235 Clinicopathological Characterizations of Post-Surgical Vascular Access Button (VAB) Sequelae in Rats
E Sosnowski, M Wilkinson, L Bedient

P236 Intestinal Adenocarcinoma in a Rhesus Macaque: A Gut Feeling
D Branch

P237 Two Cases Of Rodentibacter-Associated Pyometra in the White-Footed Mouse (Peromyscus leucopus)
S Gilliss-Smith, Y Lee, AG Backx, E Buckley Jordan, T Huynh, N Pate, S Erdman, A Garcia

P238 Assessing the Etiology of Dystocia in the Mouse
MB Patillo, AC Ritter, C Cheleuitt-Nieves

P239 Spinal Infiltrative Lipoma in a Zebra Finch (Taeniopygia guttata)
K Mokhtar Pouriani, Y Lee, AG Backx, B Varian, E Franklin, N Gutierrez, N Pate, N Fabian

P240 Chronic High-Dose Administration of Cyclosporine-toxicity in a Cohort of Royal College of Surgeons (RCS) Rats
R Alionhart, J Kopanke, M Carlson, KE Saunders

P241 Estrogen Supplementation-Associated Mortality of Mice in Estrogen-Dependent Human Tumor Xenograft Model
Y Chen, Y Chang, Y Su

P242 Struvite Urolithiasis in a Tg(KRT14-cre)1Amc/J Mouse
E Moore, N Fowlkes, V Jensen

P243 Unusual Tail Mass in a Dog
R Prentiss, J Stephens, IA Galex, R Sellers, ST Shipley

P244 A GnRH Antagonist as a Treatment Option for the Management of Endometriosis in Laboratory Rhesus Macaques (Macaca mulatta)
JA Avelino, K Wharton, CA Walsh, D Ekanayake-Alper
P245 Pathologic Manifestation of *Streptococcus agalactiae* in Immunocompetent C57Bl/6 Training Mice
K Hoffman*1, KR Peagler*2, R Rice*1

P246 Secure Intravenous Ear Catheterization Method for Pigs
A Kaiser-Vry*1, AP Kress*1, G Dell’Anna*1, MB Sauer*1

Husbandry and Management

P300 Baking Water: Watch Out Steam! Here Comes the Heat
C Patel

P301 Extinction of the Conventional Mop in the Laboratory Animal Facility. Evolution of a Macro-Environmentally Friendly, One-Pieced, Streamlined Bucketless Cleaning System.
AS Megginson

P302 Systems and Methods for Concurrent Germfree and Gnotobiotic Mouse Infrastructure
RW Engelmann

P303 New Enrichment for Squirrel Monkeys (Saimiri sciureus) and their Caretakers
MD Sheets*1, G Childree, ER Barton, S Barton

P304 Overcoming Obstacles for the Care and Use of Gambian Pouched Rats (*Cricetomys ansorgei*) in Research
W MacCabe*1, ER Feldman

P305 Achieving Successful Weight Mitigation in Over-Conditioned Research Ferrets
SR Gainer, A Osborne

P306 Maintaining a Green Anoles Colony and Creating a Green Anoles User Training Program: Challenges and Solutions
P Cheng*1, SA McErlane, C Cheng

P307 Chicks Dig it, Improving Chicken Housing and Enrichment in a Laboratory Setting
TL Stevens*1, A Tresler

P308 An Identification Guide for Vole Species
S Bruggeman*1, CG Mahan*2, E Machttinger*3

P309 Vivarium Modernization of a Nonhuman Primate Pre-Clinical Safety Facility
P Kowal*1, J Davies, LV Kendall

P310 Zip It! Mark Zebrafish Larvae, Juveniles and Adults with Fluorescent Elastomer.
S Frederickson*1,3

P311 Utilizing Microsoft Office Applications for Inventory Management
AC Admire*1, T Grgurich

P312 Creation of a Premature Piglet PICU (Piglet Intensive Care Unit) Using Common Vivarium Supplies
S Kozlov*1,2, LV Kendall*1

P313 Thinking Outside the Cage: Innovative Opportunities for Staffing
K Khukas

P314 In-House Developed Digital Tools Providing Point-of-Care Reporting Applications Improve Operational and Veterinary Efficiencies in Laboratory Animal Care Program
C Chang*1, K Imakura*1, C Brown*1, T Garcia*1, D Margolies*1, A Torok*1, DM D’India*1, K Patil*1,2, R Uthamantihil*1,2

P315 Consistency of FMT Colonization of Gnotobiotic Mice in IsoIVC-P
AF Muino*1, B Everett, C Parr, CM Perry, RW Engelmann

P316 Reusable Polyester Bags for Autoclaving Rodent Caging
J Smachlo*1, G Okenka

P317 Flooded Cage Response Cart
FJ Rendon-Gonzalez*1, R Castore, P Dawes

P318 The Long and Short of It: Anogenital Distance in African Spiny Mice (*Acomys cahirinus*) as “Telltale” Sexual Differentiation in *M* Boulanger*1, P Lester

P319 Evaluation and Time and Cost Savings Analysis of Extended Sanitation Interval of Caging Accessories and Automated Watering Valves
BK Meredith*1,2, BM Clancy*2, A Ostdiek*2, G Langan*2, K Luchins*2

P320 Iodine Immersion of Pups Coupled with Cross Fostering to Eradicate MNV and *Helicobacter* from Mouse Colonies
R Kehoe*1, JR Eswaraka, LA Bright, B Singh, D Reimer

P321 Enrichment Database: A Comprehensive Resource to Unify the Use of Enrichment to Improve Animal Welfare
B Macleod*1, K Bott

P322 Refinement in Vampire Bat Husbandry
RE Agosto-Quinones*1, V Bergdall, B Youngblood

P323 Mouse Allergen Exposure on Single-Use Versus Multi-Use Disposable Gowns: A Pilot Study
A Kumar*1, WO Williams*2, E Moore*2, B Singh*1

P324 Utilizing Cage-Side Scales for Efficient Weight Collection in Non-Human Primates (NHPs): A Comparative Analysis
A Calvillo*1

P325 Avoiding Breeding Burnout: An Enriched Life
J MacCabe*1, WO Williams

P326 A Mutually Enriching High School Student Internship Program
R Beiler*1

P327 Feed Placement Preference in Golden Syrian Hamsters
AR Whigham*1

P328 Long-term Seroconversion Risk Among a Cohort of Cynomolgus Macaques
A Khatri*1, M Bazile*1, K Breyer*1, J Bernal*2, M Hargaden*1, J Franco*1, M Simkins*1, R Santos*1,3, S Somanathan*1,2

P329 Effect of Novel High-Fat Diet Feeding Methods on Food Waste, Hair Coat Grease Accumulation, and Weight Gain in C57BL/6ncrl Mice
AR Guy*1,2, S Rasmussen*1,2, M Raymond*2

P330 An Attempt to Standardize the Appropriate Breeding Environment by Using Environmental Enrichment Strategies in Naturally-Aged Mice
N Ogiso*1, K Tomita*1, K Takano*1, H Kawasaki*1, N Morikawa*1, J Almunia*1

P331 Use of Running Wheel Enrichment to Decrease the Incidence of Food Grinding Behavior in CD-1 Mice (*Mus musculus*).
A Skurnack*1, L Garman*1, S Lane*1

P332 Effects of Non-Aversive Handling on Home-Cage Activity During Cage Change in Mice
B Edgell*1, L Somers, A Healy

P333 Relationship Between Temperament, Social Rank and Diarrhea in Group Housed NHPs
K McGrew

P334 A "Betta" Environment for Betta Fish (*Betta splendens*)
SL Hastings*1
P335 Characterization of Palpebral Foreign Material Accumulation in RNU Rats on Paper Square and Corn Cob Bedding
A Suetsens*, A Noyce, S Adams

P336 Behavioral and Wounding Rate Measures as Predictors of Pairing Success in Laboratory Swine
AL Bailey*, LM Hopper, MC Painter, E Griffin

P337 Evaluation of Improvements in an Innovative Disinfection System Using Gas Phase Nucleic Acid Digestion Technology to Support Laboratory Animal Management in NCGG
JA Almunia Fuertes¹, N Ogiso¹, R Narita¹, Y Suzuki³

P338 Tenrec Ecaudatus Enrichment
MD Sheets*, R Crispino

P339 Why Handling Laboratory Livestock Should Not be a Rodeo Event and the Journey to More Humane, User Friendly Techniques
L Panepinto*, T Sauer

P340 Validation Study of Liquid Sterilants for Sterilization of Flexible Film Isolators
KY Jen*, AM Williams

P341 Running Wheels as a Potential Treatment for Stereotypic Behaviors in Mice
A Ferraro*, J Schiavo, PS Allen, N Ting

P342 Portable Emergency Euthanasia System
S Langelier*, AM Williams²,³

P343 Enzymatic Presoak on Primate Foraging Toys is More Effective when Compared to a Rinse and Sanitize Strategy
A Laufenberg*, J Sullivan, P Pierre, T Hausen

P345 Evaluation of a Novel Electric Shock Trap for Rodent Pest Control in Animal Facilities
MD Wallis³,², JS Villano*, C Ondeck²

Laboratory Investigation

P400 A Comparison of Three Buprenorphine Formulations for Management of Acute Post-Operative Pain in Mice
C Kirkpatrick*, C Fremont-Rahl, E Theve, M Brottchite-Fine, A Duttaroy

P401 COVID-19 Pandemic Effects on the Activity Levels of Yucatan Mini Swine
NE Barton¹, A Cook¹, J Ref², S Kasui¹, P Mostafizi¹, S Daugherty², JJ Lancaster², KA O'Connell¹, S Goldman¹

P402 Evaluating Sub-Renal Capsule Cavity Tumor Growth in Immunodeficient NSG-MHC I/II Double Knock-Out Mice
L Bottoms*, B Matran, K Potts, S Khang, EO Sanchez, W Kang, J Yang, M Cheng, J Keck

P403 Comparing Tumor Growth and Erosion Rate Following P16MC38 Subcutaneous Versus Mammary Fat Pad Implantation
J Michelle*, DR Rose, EO Sanchez, L Bottoms, B Matran, K Potts, M Cheng, J Keck

P404 Effects of Exogenous Erythropoietin on Rabbit (Oryctolagus cuniculus) Hematological and Biochemical Parameters
J Levine¹, J Nascimento Seixas¹, JM Ritter², A Liew², C Tansey²

P405 Comparative Mutational and Gene Expression Analysis in Canine and Human T-cell Lymphoma
MS Metzler¹, H Yang², J Park³, L Druhan², N Steuerwald³, S Suter¹

P406 Bacterial and Infectious Agent Profiling in an Academic Colony of Xenopus Laevis
KP Nickerson¹, S Dayanis¹, K Magan¹, A Richardson¹, K Charron¹, H Wunderlich¹, CL Perkins¹, M Millington²

P407 Washed up and Wasted: A Promising Alternative for Collection of Influenza Viral Load in the Ferret
TJ Small¹,², N Blackburn¹, KJ Riebe¹, A Karlsson¹,², T Oguin¹,², HF Staats²,³, CS DUCKETT¹,²

P408 Meloxicam Attenuates Heat Hypersensitivity in Red-eared slider Turtles
K Schwartz¹, C Pacharinsak¹, M Huss¹, K Jampachaisri², SA Felt¹

P409 Extending MS-222 Mediated Anesthesia in Zebrafish (Danio Rerio)
L Bern¹*, AG Kramer, L Fehrenbach, RA Malbrue

P410 Atipamezole Results in Increased Heart Rate and Decreased Blood Pressure in Cynomolgus Macaques (Macaca fascicularis)
K Schwartz¹, M Zhang¹, C Pacharinsak¹, C Darian-Smith¹, K Fisher¹, B Franco¹, M Huss¹, K Jampachaisri², PE Sharp¹

P411 African Grass Rats (Arvicollis niloticus) as a Spontaneous Model of Type II Diabetes and Metabolic Syndrome in Humans
T Simmons¹, R Gruenwald¹, L Yan¹, D Agnew¹, M Hoenerhoff³,⁴

P412 Anesthetic Sensitivity of Mouse C57/BL/6 Substrains to Isoflurane
K Tuhoy¹, J Marx

P413 2D-Analysis of Serum Proteins in a Mouse Model of ANCA-Associated Vasculitis (SCG/Kj Strain)
O Suzuki¹*, K Suzuki²

P414 Medetomidine/Vatinoxan and Ketamine Effectively Anesthetizes Mice
K Tien¹, ED Alamaw¹, B Franco¹, K Jampachaisri², M Huss¹, C Pacharinsak¹

P415 Effects of Refined Handling on Reproductive Indices of BALB/cJ and CD-1 IGS Mice
GLAS: Yes (1); MA Hull¹*, EA Nunamaker², PS Reynolds³,⁴

P416 Progression of Spontaneous Colitis in MDR1a and IL10 Knockout Mice Housed in either Disposable Mouse or Rat Cages
HK Birkle¹,², L Schultz², B Russell¹, T Howard¹, R Fabrey²

P417 Decellularized Graft for Repairing Severe Peripheral Nerve Injuries in Sheep
E Contreras¹,², S Traserra¹,², S Bolivar¹,², N Nieto-Nicolau¹, J Jaramillo¹, J Forés³, E Jose-Cunilleras³, X Moll³, F García³, I Delgado-Martínez¹, O Fariñas¹, P López-Chicón¹, A Vilarrodona³, P Vergara¹,², E Udina¹,², X Navarro¹,²

P418 Evaluation of the Celluar and Humoral Immune Response of a Vaccine Candidate against COVID-19 with Different Alum Adjuvant Formulations
J Vega Rojas¹,⁶, MA Carbajo¹, J Garcia Gasca¹, J Mosqueda Gualito², M Velasco Elizado³, R Ruiz Manzano¹, D Hernández Silva³, M Rocha-Solache¹, R Perez-Serrano¹, E Zarate¹, R Castro-Acosta¹, D Ocampo-Gutierréz¹
P419 Subcutaneous Injection of Alfalxalone-Xylazine-Buprenorphine in Mice to Induce a Surgical Plane of Anesthesia and Echocardiographic Evaluation
M Young1, S Anderson1, J Kelly1, L Riffle1, SL Spears1, E Suess-Radford2, J Kalen1, J Gulati1

P420 Volume-Associated Clinical and Histopathological Effects of Intranasal Instillation in Syrian Hamsters: Considerations for Infection and Therapeutic Studies
C Forero1, JM Ritter2, J Nascimento Seixas2, JD Coleman-McCray4, M Brake1, JA Condrey1, C Tansey1,1, SR Welch1, SC Genzer1, JR Spengler4

P421 Development of a Delayed-Type Hypersensitivity Model for Assessing Immunomodulatory Effects in Rhesus Macaques
W Smallridge3, B Vega

P422 Non-invasive In Vivo Imaging of Reactive Oxygen Species (ROS) Activation in Neuroinflammation and Pain
M Abraham1, E Price2, J Kahn3, D Zwilling2, M Stenslik1, I Bennacef1, A Gleason1, C Miller1

P423 Comparison of Novel and Traditional Bleeding Techniques in Neonatal and Juvenile Mice
R Prentiss1, K Lamont1, B Bollinger1, K Gaston1, C Fletcher1,2, h atkins1,2, IA Galex1,2

P424 Novel Bedding: Does Hemp Material Have the Physical and Chemical Properties Appropriate for Housing Laboratory Animals?
J Locklear3, TE Whiteside, DM Kurtz

P425 Interaction of Juvenile Stocking Density and Larval Diet on Adult Size and Sex Differentiation in the Laboratory Zebrafish (Danio rerio)
C Sparkman1, J Darling, D Kennedy, L Schur, H Engle, E Liechty

P426 Effectiveness of Three Injectable Anesthetics in Sedating Pacific Bluefin Tuna
K Schwartz1, C Pacharinsak, B Block, C Morrill, SA Felt

ya alammeh1, R Abu-Talib, C Czintos, w Su, D Zurawski, S Noble, I Soojhawan

P428 Examining Inflammatory Signaling in Astrocytes as a Key Modulator of the Neurovirulence of Western Equine Encephalitis Virus in a Novel Mouse Model of Parkinson’s Disease
S Thomas3, S Rocha, A Latham, CP McDermott, RB Tjalkens

P429 Fecal Screening for SARS-CoV-2 from Urban White-Tailed Deer (Odocoileus virginianus) on the NIH and NIEHS Campuses
MD Johnston1,2, DM Kurtz1, ML Thomas2

P430 Carprofen Attenuates Postoperative Hypersensitivity after Plantar Incision in Immunodeficient NSF Mice
ED Alamaw1, K Casey1, K Tien1, B Franco1, RM Cotton1, CM Nagamine1, PE Sharp1, K Jampachaisri1, C Pacharinsak1, M Huss1

P431 High-dose Carprofen as a Postoperative Analgesic Therapy in Female CD1 Mice is Inadequate
H Weaver1, B McKenna1, J Kim1, LV Kendall1,2

P432 Two Sentinel-Free Soiled Bedding Matrix Exposure Methods Outperform Soiled Bedding Sentinels for Mouse Colony Health Monitoring
M Tu-Wood1, S Hansen2, ML Hart2, RS Livingston2, KM Donovan2

P433 Different Effect of Exercise on Metabolic Profile in SPF and GF Mice
E Ko1, J Kim, J Seong, H Kim, Y Kim, Y Kim, H Kim, J Baek, S Jang

P434 Optimizing the Glass Bead Sterilization Protocol
Focusing on Removal of Organic and Bacterial Intraoperative Contamination
K Lewy1, J Bova, R Rose, TV Vemulapalli

P435 Assessing Chronic Stress in Cats: Analytic Validation of an Assay to Measure Hair Cortisol
T Lamon1, J Lidbury1, C Budke1

P436 Grinding Much? Does Grinding Rodent Feed Pellets Improve the Sensitivity of Microbial Testing?
J Weeks1, J Locklear, TE Whiteside, DM Kurtz

P437 Assessing Loss of Righting Reflex Induced by Exposure to Carbon Dioxide Gas in Three Mouse Strains
BA Munro1, DR Merenick1, JM Gee1, D Pang1,2

P438 Standardized Loss of Righting Reflex Method to Identify Carbon Dioxide Gas Concentrations Inducing Unconsciousness in Sprague-Dawley and Long-Evans Rats
DR Merenick1, BA Munro1, JM Gee1, D Pang1,2

P439 Etomidate Effectively Euthanizes Zebrafish (Danio rerio)
K Schwartz1, C Pacharinsak1, KA Byrd1, K Jampachaisri1, DK Chu1, M Huss1, PE Sharp1

P440 Validation of a Fecal Corticosterone Metabolite Immunoassay to Assess Changes in Basal Stress in the Laboratory Zebra Finch (Taeniopygia guttata)
GLAS: Yes
AG Backx3, A Wu1, MS Fee1, N Fabian1

P441 LINE Transposition into Murine Thyroglobulin Results in Congenital Thyroid Dysplasia
BM Smits1, W Bailey2, Z Erdos2, J Gaspar3, W Glaab1, S Kuruvilla3, P Lane2, C Regan1, T Rosahl1, T Thudium3, J Wang3, M MacGowan1, H Multari1, C Cumo1, A Navis1, T Forest2

P442 Xenograft Tumor Growth Variability in Nude Mice Infected with Corynebacterium bovis as a Single Pathogenic Agent
AG Backx1, A Burds Connor1, TM Albers3, KS Henderson1, G Mulder1, HR Holcombe1

P443 Longitudinal Behavioral Characterization of 5xFAD (C57BL/6J) Mice Confirms Sexual Dimorphism and Finds Novel Differences in Motivational/apathy Behaviors
VA Davis1,2, L Van Eldik1,2, DJ Braun1,2

P444 Can Long-term Isoflavones Intake Alter Steroid Adrenal Secretion?
S Caceres1, G Silvan, MJ Illera, B Crespo, PJ de Andres, JC Illera

P445 Determination of Postmortem Interval in the Laboratory Mouse Under Various Environmental Conditions
R Howie1, N Tataryn, S Yang, K Gibson-Corley, M McKinney

P446 Regenerative Engineering of Complex Extremity Trauma
CA Alazar1, K Habling1, Z Working1, N Willet1, A Tahayeri2, L Bertassoni3, K Nakayama1

P447 Examining the Impact of Laboratory Housing Temperature and β-adrenergic Signaling on Murine CD8 T Cell CD28 Co-stimulation
CM James1, C MacDonald, H Honikel, C Chavel, S Olejniczak, E Repasky
P448 Eliminating *Helicobacter* spp. from Syrian Hamster Surrogate Breeders by Using Antibiotic Cocktail
C Chou¹, Y Sung², H Wang¹, W Shih¹, Y Lee¹, W Hsieh¹, Y Chen¹, S Hung¹, C Wu¹, Y Su¹

P449 Effect of Granulocyte-macrophage Colony-stimulating Factor on SARS-CoV-2 Infected hACE2 Mice
LV Kendall¹, TD Boyd², A Bosco-Lauth¹, n markham³, SH Sillau³, P Clarke³, KL Tyler¹, H Potter²

P450 Early life dosing with Cholera Toxin B inhibits age-associated obesity in mice
B Varian¹, K Weber¹, V Farrell¹, G Haner¹, A Hardas², T Poutahidis², S Erdman¹

P451 Hypothermia Reduces Cardiac Function in Isoflurane Anesthetized Mice
RM Cotton¹, B Franco¹, J Kim¹, C Ruaengsri², ED Alamaw¹, T Hodge⁶, PE Sharp¹, K Jampachaisri², M Huss¹, C Pacharinsak¹
Animal Welfare, Training, and 3Rs

P100 Creating a Corporate Compassion Fatigue Awareness Program through a Preventative Medicine Approach

D O’Connell¹, C Allen², L Holzwarth³

¹Global Animal Welfare, AbbVie, North Chicago, IL; ²Comparative Medicine, AbbVie, North Chicago, IL; ³Global Well Being, AbbVie, North Chicago, IL

Compassion fatigue (CF) is a recognized challenge in the laboratory animal profession, and there is interest in developing tools to respond to employee needs as they surface. Too often, this is a reactive measure, with a focus on managers to identify and develop support mechanisms for employees who may be experiencing aspects of CF. However, CF touches employees at all levels, including managers who may also benefit from support. While laboratory animal people managers should play a critical role in compassion fatigue support and direction, we believe managers should be a complementary component of a CF program rather than the necessary leaders. At AbbVie, we identified an opportunity to approach CF from a more holistic, preventative health perspective, constructed through the guidance of mental health professionals who have expertise in the area of CF and preventative mental health approaches.

We began by recruiting leaders from our Employee Assistance Program (EAP) who have impact over the programs at each of our sites, globally. The focus of the enhanced CF program would be holistic – starting with education on the topic at new employee orientation, continuing through ongoing efforts to promote a culture of CF openness, and providing continuity of professional support and resources for staff. Several key aspects of the program were critical to its success and sustainability: 1. Active engagement from our Global EAP teams 2. Active engagement from animal program leadership globally 3. Formal integration of CF program content into new employee orientation 4. Ongoing CF-related programming and 5. Personalized interactions between each site’s EAP representative and our animal program and scientific staff. Roll-out of the new Global Compassion Fatigue program occurred at the end of 2022. Receptivity to the new approach has been positive, and a Global CF Working Group has formed to carry concept into practice. Perhaps most appreciated is the corporate-level recognition of the issue and unity of global support for our teams. Not only do animal care and technical staff feel more visible and supported, but a palpable weight has also been lifted off our managers’ shoulders.

P101 Learning from Reported Critical Incidents to Develop a Culture of Care for Animal and Human Wellbeing

SJ Bischoff¹, A Enkelmann

Animal Welfare Office, University Hospital Jena, Jena, Germany

A culture of care includes the focus on the well-being of our employees in animal husbandry and animal research, as well as the benefits of mutual attentiveness and appreciation. To ensure a motivated team structure, it is equally important to give each employee the opportunity and space to deal openly with unexpected incidents or even mistakes in dealing with laboratory animals. In a facility with a well-established culture of care, it is possible to learn from each other and support mutual learning in this way. Ultimately, this is where the benefits lie - on the one hand, how to ensure the well-being of laboratory animals and, on the other hand, how to achieve scientific progress. The authors will expand on the successful establishment of the web-based database CIRS-LAS, in which incidents in the entire field of laboratory animal science can be reported. We provide an insight into more than 50 specific incident reports that have been published in the database and evaluate the cases in relation to possible risky areas of laboratory animal science. Searching our online database, also possible via mobile application, offers easily accessible and effective learning opportunities to avoid possible risks in animal research. The database is an important resource for staying in touch with the latest 3R prospects and learning from other technical as well as scientific staff who are committed to the culture of care in their facilities. Join us and become part of the online resource used by more than 300 people worldwide to learn about the opportunities to implement 3R measures in the sense of a lived culture of care.

P102 Implementation of online training for the promotion of well-being in laboratory animal personnel

N Celeste*, M Huss

Stanford University, Sunnyvale, CA

There is a continued need for the awareness and support of improving laboratory animal personnel well-being but institutions can find it difficult to consistently dedicate time and resources to providing this training. Previously, Stanford University’s Veterinary Service Center (VSC), provided a once yearly in-person training on compassion fatigue (CF) and burnout (BO) for staff, trainees, and faculty. Disadvantages to a once yearly training include variable availability of VSC personnel to attend the training and the training did not include research personnel outside of the VSC. Furthermore, the onset of the COVID-19 pandemic impeded the ability to offer this in-person training in a large group setting. To address these challenges, an online training discussing CF and BO was developed and distributed to VSC staff and research personnel through institutional listservs. Upon completion of the training, participants were asked to complete an anonymous survey. The Likert scale survey addressed participants preferences for online versus in-person training, efficacy of online training, and evaluation of generational differences in responses. One hundred forty-one individuals participated in the online training and survey. Results indicated that participants had a significantly increased awareness of the signs of CF and BO (93% strongly agree/agree [CF]; 88% strongly agree/agree [BO]) as well as the resources available to ameliorate feelings of CF and BO (87% strongly agree/agree). Participants indicated that they preferred an online training module versus
in-person training (80% online preference), and in addition, no generational differences between preference were found ($P = 0.2942$). Lastly, the survey provided opportunity for participant suggestions that can now be incorporated into next steps for the wellness program. This online training course remains readily available to all VSC and research personnel to review and can now be offered to newly hired personnel at Stanford University.

P103 The Lesser Known Benefits of Laboratory Animal Enrichment Programs

JA McGrath*1, A Brown, E Becerra, A Ostdiek, D Mailhiot

ARC, University of Chicago, Chicago, IL

The benefits of enrichment for animals are well documented, however the benefits to humans can often be overlooked. Compassion fatigue has become a more common topic of conversation in recent years. Compassion fatigue is a state of mental and physical distress that occurs when caregivers are chronically exposed to the suffering of others and can worsen over time if the underlying cause is not addressed. At the University of Chicago, we have ensured that we include the entire veterinary, husbandry, and operations staff in our large animal enrichment program to have contact with animals in an entirely positive setting. This has the added benefit of increasing the quality of enrichment for the animals. Thus, we consider our methods an investment in both human and animal welfare. In our facility, we have established standards, such as new toys on cage change day, and a rotation of twice daily documented treat enrichment for non-human primates. We additionally have a rotating monthly special enrichment. This special enrichment time extends the opportunity for all groups to become involved and includes growing and distributing wheatgrass or making papier mâché balloons filled with forage. Because these special enrichments require more time and resources, we invite people from other work groups to make and distribute these special treats. This serves to personalize the enrichment, build connections between working groups and is a great way to improve the daily lives of the animals in interesting ways. Animals at their happiest and healthiest states produce the highest quality data. Participants in the special enrichment have reported that interacting directly with the animals boosts their mood, and usually seek out opportunities to participate again. We have found that the more we include people, the more they want to participate, which can boost morale and retain staff as well.

P104 How are Apples and Oranges weighed in practice? On the incoherent implementation of the Harm-Benefit-Analysis as a requirement of the EU Directive 2010/63/EU.

D Hajosi*1,2, H Grimm2

1CCTI, Department of Medicine, Columbia University, New York, NY; 2Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria

The use of animals for scientific purposes is regulated in all EU member states (MS) by specific laws. The EU issued the Directive 2010/63/EU (Directive) as a comprehensive legal document, which covers the use of research animals within the EU and it represents the basis for national legislation by EU members. MS were required to transpose the content of the Directive into national legislation and to implement it by January 1, 2013. The intended goal of the Directive is to harmonize laws among MS for the use of animals in research. However, the Directive provides vague explanations for certain requirements, and therefore creates room for interpretation by MS, which consequently leads to varying degrees of harmonization. In this study, we have reviewed the implementation of the harm-benefit-analysis (HBA) among MS, which is explicitly mentioned in the European Directive as a requirement of the project evaluation. The HBA plays a role in the review process of research proposals using animals and its function is to weigh the expected harm to animals against the anticipated benefits and it should ultimately facilitate the decision-making whether the use of animals for the scientific purpose is justified. We are going to present the results of a cross-national review that has shown there are discrepancies among MS in regard to the HBA pertaining to the interpretation of the EU Directive, the transposition into national laws, and the implementation of an analysis in practical terms during the project evaluation process, and these differences ultimately make the expected harmonization in the EU challenging.

P105 Tail Dosing and Bleeding Revisited: Toppling 35 Years of Dogma

A Xue*1, D Wagner*2, G Zhang*2, E Gosselin*2, N Johnson*1, R Kastenmayer*1, E Gangl1

1Clinical Pharmacology and Safety Sciences | Animal Sciences & Technology, AstraZeneca, Boston, MA; 2DMPK, Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA

It is common practice to use cannulated rats for pharmacokinetic (PK) in-life studies as it yields high-quality PK parameter estimation. While offering many benefits, cannulation requires surgery, post-surgical care, and cannula maintenance. As an alternative approach, the strategy of dosing and bleeding rats via the tail vein in a single experiment is technically feasible and theoretically offers many benefits.
Unfortunately, however, as reported by F Tse et al. in 1984, parallel tail dosing and bleeding is scientifically flawed and yields inaccurate estimation of PK parameters following intravenous administration. The underlying causality of poor data quality has not been addressed in over 35 years. To overcome the technical flaws associated with parallel tail dosing and bleeding, we have developed a Tail- Dose-Bleed (TDB) method as a substitute for use of cannulated rats. To demonstrate the proof of principle of TDB, the technique is compared in both stand alone and animal crossover studies employing conventional femoral/jugular dosing and bleeding. Reference compounds dexamethasone, imipramine, propranolol and tolbutamide were used to compare PK parameters of the TBD technique with that of conventional IV dosing and bleeding. A matched pair t-test assessment confirmed that parameters of clearance, volume of distribution and t ½ results were comparable (p = <0.05) for all compounds tested with the exception of the t ½ result for imipramine. Using this newly described TDB procedure, we demonstrate the ability to overcome documented data quality issues when dosing and bleeding via the tail. The TDB technique has numerous operational advantages, but most importantly, addresses key animal welfare concerns relevant to institutional animal care and use committees (IACUC). The notable advantage here is reduced animal stress and discomfort by eliminating the need for surgery and recovery. And by consequence, allows for animals to be group housed and re-used without concern for loss of cannula patency. The tail dose and bleed method is simple and appears readily transferable to other laboratories.

P106 Cisterna Magna Ports in Rhesus Monkeys Then and Now

BE Smith*, DB Gilberto, HA Corcoran, GR Sitko, JM Beech, JA Werner, JL Hughes, WE Smallridge, LK Handt, TL Gray, SL Motzel

Laboratory Animal Resources, Merck and CO., West Point, PA

The Cisterna Magna Ported (CMP) rhesus monkey model was developed over 20 years ago as a means for chronic collection of “pristine” cerebrospinal fluid (CSF) samples. Major advantages of this model are repeatability and reliability, allowing for an overall reduction in the number animals needed for chronic CSF collection. Over the years, several refinements have been implemented to improve the success of this model, benefiting both the research use and overall welfare of the animals. Between 2004 and 2022, 249 rhesus monkeys had CMP surgery, with 187 surgeries being successful (75% success rate) for long term collection of CSF. Refinements to the catheter design which have been beneficial to the longevity of the model included decreasing the length of catheter that is inserted into the cisterna magna, utilization of a fixed disc and collar placement on the catheter and modification of the catheter diameter have proven to be successful. Reduction in the frequency of port maintenance from 3x/week to 1x/month, for established models, has reduced the number of times a port needs to be accessed thus reducing the chance of introducing contamination and need for repair surgeries to replace deteriorating ports. Another major milestone in the success of this model is the ability to successfully treat bacterial infected ports intra-CMP with antibiotics. Prior to 2010, ports and catheters were removed from 66 infected models followed by systemic antibiotic treatment and then a CSF tap to confirm there was no infection allowing for animals to be re-implanted. After 2010, 51 infected models were treated intra-CMP with antibiotics and in 80% of the cases the infection was cleared up thus avoiding surgeries for catheter removal and re-implantation. Another refinement to the model was a multimodal analgesic approach to pain management instituted post-surgery to help animals recover more quickly. Finally, paired housing, environmental enrichment, providing foraging material and rotation of fruit and vegetables have also improved the well-being of the animals. In summary, numerous refinements have been applied to the CMP model for chronic collection of CSF in rhesus monkeys over the past 20 years, thereby utilizing the 3Rs principles to optimize this valuable research resource.

P107 Where the Honeysuckle Grows...Utilizing Browse in Nonhuman Primate Enrichment Programs

E Dougher*

Enrichment, Inotiv, Corpus Christi, TX

There is often a desire among animal care professionals to increase the time NHPs spend on engaging with their enrichment, environments and each other in species appropriate fashions. In introducing and developing a browse program, utilizing non-toxic plant trimmings at an NHP site there has been a documented increase in both engagement and in the behavior repertoire of the NHPs compared to what was typically observed onsite. With an addition of a browse in an enrichment program there are elements to consider such as the sourcing of non-toxic, safe and effective browse, limiting impacts on husbandry routines and drain sensitive settings, and ensuring the program can also be cost effective. In order to ensure the browse program would be set up for success there needed to be a plan in identifying browse sources, identifying animals who may benefit most from using browse and approaches in working alongside husbandry teams trying something new. In addition, program success also depended on developing documentation templates to gather information on NHP behavior observations, the time husbandry spent cleaning up and handing out browse and thoughtful approaches of how to offer browse in drain sensitive settings. Documented observations determined engagement times with browse surpassed engagement times with approved toys and devices by an average of 30 minutes for indoor cage housed NHPs. It was also documented that outdoor housing environments often saw robust observations of species-specific behaviors when offered browse and indirect indicators of hours-long engagement. Impacts that handing out and cleaning up browse had on husbandry efficiency were low, with an average time of 5 minutes for each, with thoughtful drain consideration in browse preparation on some settings going a long way in no drain
issues reported. Efficiency for handing out and cleaning up browse was even more evident when comparing time spent preparing, setting up and cleaning toys or devices. While browse cost was determined to be lower than average costs for some toys, it should be noted that browse cannot be re-used. Overall, introducing browse to the NHP enrichment program exceeded expectations and supported a mindset of considering the 24/7 NHP experience while under human care.

P108 Colla-boar-ation: Teaching Chronic Surgical Pigs to Participate in Their Own Care With Use of PRT

MM Abbatello, A Hines, P Gordnier

Preclinical, Kelly Professional and Industrial providing Services for Ethicon Endo-Surgery, Cincinnati, OH

Post-surgical care of large animals can provide many challenges in the laboratory setting. The type of surgical procedure conducted, and its severity, directly affects an animal's physical needs. Undergoing surgery can incite higher stress levels in the animal. This can be increased further if a technician must perform more intimate care while the animals are recovering, such as taking vitals or administering medication. Elevated stress can cause the animals to avoid interacting with their caretakers. Having a calm animal that voluntarily participates in its own care allows for accurate data collection, ease of care, and ultimately improved animal welfare. Our facility pursued developing a positive reinforcement training (PRT) program for crossbred swine to prepare the animals for their post-operative care. To aide technicians, detailed training documents were created. The training plan contained small approximations to reach the training goal. Session logs helped visualize progress for each individual animal. Staff were trained on PRT basics, and a high value reinforcer (diluted apple juice) was chosen. Animal training ranged from 6 to 17 days, and the training plan began with positive physical interaction and ended with animals standing still while vitals were collected. By the end of the training plan, the animals were voluntarily participating in all procedures, and receiving medications without physical restraint. In previous years, data was unable to be collected due to the animals being uncooperative. Technicians also noticed that these animals were willing to walk into transport cages for the number of animals needing to be used, while developing and refining the technical skills of staff.

P109 Reducing the use of live animals in training by building cost efficient and realistic feeling venipuncture training aids.

AJ Grey, MB Behnke

Animal Resources Unit, USDA/ARS/PA/NBAF, Manhattan, KS

The National Bio and Agro-Defense Facility (NBAF) is a state-of-the-art research facility whose mission is to protect the United States against transboundary, emerging, and zoonotic animal diseases that threaten our food supply, agricultural economy, and public health. While working in ABSL-3, ABSL-3AG, ABSL-4, and ABSL-4AG, it is extremely important that technicians are well trained, confident, and safe during bio-sampling procedures. The Animal Resource Unit (ARU) manages all aspects of training for staff who will be involved in assisting principal investigators (PI) in their research and blood collection on live animals. ARU’s training plan intentionally includes various homemade and commercially available simulators at all training levels. This solution decreases risk of exposure and injury while allowing initial hands-on experience for learners in a safe environment. There are no commercially available venipuncture training aids that are both appropriate and cost-effective for NBAF learners, nor any that represent the complexity of species that NBAF will include in our program (mice to livestock). We are not aware of home-made simulators that adequately replicate the tactile sensation (i.e. “feel”) of a live animal blood vessel. Drawing on almost 30 years of experience in veterinary venipuncture and staff training, we were able to develop a model that can be easily made in-house, using commonly available products, and can replicate the feel of blood vessels ranging in size from 5mm to 11mm. While the use of live animals during phlebotomy practice will never be replaced completely, the use of a realistic feeling training aid will reduce the number of animals needed to be used, while developing and refining the technical skills of staff.

P110 Moving up: Evaluation of space orientation on the progression of cynomolgus macaques through a training protocol

BN Gaskill, M Burns, G Andrews-Kelly

1Animal Welfare Compliance, Novartis, Wichita, KS; 2Novartis Institute for Biomedical Research, Cambridge, MA; 3Lab Corp, Somerset, NJ

Nonhuman primate (NHP) species commonly housed in research facilities, including cynomolgus macaques, are semi-to primarily arboreal species that rely on the use of species-typical behaviors such as vertical flight to alleviate stress in captive settings. Standard housing configurations for NHPs have historically provided limited access to vertical space. Providing access to opportunities to express species-typical behaviors is a refinement to NHP housing. We hypothesized that home cage space oriented vertically vs. the same amount of space but oriented horizontally would affect the progression of NHP training after arrival to a new facility. Cynomolgus macaques of both sexes (24 cages; 2/cage) were randomly assigned to stainless-steel quad caging configured to house either 2 horizontal or 2 vertical pairs. NHPs progressed at their own pace through the Monkey and Technician Training (MATT) stages over 4 weeks of acclimation. MATT stages include 1) NHPs shift into new cage 2) Step 1 + desensitize to a falseback 3) Step 1-2 + technician touches NHP’s arms. NHPs progressed to the next stage once they scored a 3. The three stages, in addition to human interaction, were scored 2-3 times per week on a 5-point scale based on cooperation (1=0%
and 5=75-100% cooperation). Data were analyzed as repeated measures General Linear Models. Over the course of the study human interaction generally increased (F1,175=108.1;P<0.001) but vertically housed NHPs had higher scores than those housed horizontally (F1,175=30.2;P<0.001). When asked to shift (stage 1), NHPs in horizontal cages had higher scores than those housed vertically (F1,388=142.8;P<0.001). In stage 2 (falseback), there were no differences in scores due to space orientation (F1,388=0.002;P=0.49). When touching the NHPs’ arms, the effect of orientation differed based on where cages were located in the room. Vertical cages near the door had higher scores than horizontal ones. However, when in the middle of the room, orientation treatments were similar. In conclusion, vertical space and cage location impact human interaction and training. Ultimately, vertical space is ethologically relevant and may improve welfare but specific management strategies should be put in place to work with NHPs during training.

P111 Fostering Culture of Care Through Continuous Learning and Improvement

K Bell1, L Sheldrake2, J Harrington2, T Edstrom1, S Albery Larsdotter1, S Kuester1, R Mason1, D Pao1

1Animal Sciences & Technologies, AstraZeneca, Waltham, MA; 2Global Animal Research Assurance, AstraZeneca, Cambridge, United Kingdom; 3Alexion, New Haven, CT

AstraZeneca’s In Vivo Learning Log was developed as part of a global Culture of Care whereby the in vivo community is enabled and empowered to actively participate in continuous learning and improvement without fear of repercussion. Rather than focusing on who was involved, the Log utilizes Root Cause Analysis (RCA) to understand what happened, why it happened, and how to prevent recurrence. The risk of future occurrences is reduced through understanding the root cause and development of appropriate Corrective And Preventative Actions (CAPA). In addition, by acknowledging that human error can never be fully eliminated we create an environment where employees can identify events or near misses openly and honestly. To make a submission to the Log, an individual scans a QR code or clicks a link to access a template. Once completed, information is uploaded to a database monitored by AstraZeneca’s Regulatory Managers. Automated email notifications are immediately distributed to the group and IACUC, prompting timely review. Additionally, the list is accessible to all members of the global in vivo community enabling full transparency and awareness. Submissions to the Log are categorized as events or near misses and are evaluated based on the level of impact to animal welfare and overall scope. Those of medium impact or higher, or of a repetitive nature are progressed to RCA to identify the root cause(s) and develop CAPA. The group that is gathered for input into the RCA is purposely selected to ensure a diversity of roles and experiences. Outcomes are shared with the in vivo community through electronic Learning Cards. In 2022, the first year of implementation, 230 submissions were received. Of those, approximately 60% were identified as events and 40% as near misses. Regardless of categorization, 60% of submissions progressed to RCA. Implementation of and learnings from the Log have benefited our animals and our people. Indicators of success include positive feedback from RCA participants and in vivo community members who view the Learning Cards. In addition, 87% of submissions are associated with contact information. Because anonymity is the default setting, inclusion of contact details suggests employees feel comfortable being associated with event information.

P112 Training Validation and Staff Incentivization, A Plan to Keep Your Staff Happy and on Track

EC Brooks1, M Weiss, J Hickman-Davis, V Bergdall

University Laboratory Animal Resources, The Ohio State University, Columbus, OH

Training validation is important to ensure the effectiveness of a training program, confirming tasks are performed consistently, offering opportunities for coaching and providing opportunities to reward excellent work. Pre-pandemic, the validation process focused on task performance and remediation. The process was revised to delineate training responsibilities and provide positive coaching experiences. Previously, the onboarding process for employees was poorly defined, which resulted in chaotic first days. A checklist was created that named responsibilities for each part of the process. It laid out each step, including admins (policy, uniform, and identity badge), supervisors (locker and facility orientation) and trainers (SOP and specific tasks). A timeline was created of integral check-ins and expectations for the first year. After the first year, employees moved into the yearly validation program. A monthly walkthrough process was created to give supervisors feedback on the status of work areas. That system provided an overview of the area without allocation of responsibility to a single person. Required training is assigned routinely by the institution and must be completed by the individual. Teambuilding exercises were created and distributed each quarter to foster a sense of community. Training validation is often seen by staff as a punitive process, thus, it was important to reframe validation into something positive. The incentivization program combined the monthly walkthroughs and completion of assigned training and team building exercises. Any zone that completed all facets earned free lunch. The goal was to highlight good performance, promote teamwork, and improve job satisfaction. A well-laid-out on-boarding and follow-up process is critical to ensure employees get the support they need to be successful. The walkthroughs have improved team compliance by 18% across all facilities with an increase of 25% for the largest rodent only facility. Staff receive regular feedback and can identify issues before they are seen as a problem. While the incentivization program is in the early stages of implementation, several zones have planned team building activities outside the program and are working together to ensure tasks and training are completed on time.
Important, so this study was designed to survey current and former IACUC members for insights into the contribution of ethical considerations to their deliberative processes. The survey queried current and former IACUC members regarding whether IACUCs perform ethical deliberation and whether they would be comfortable labeling the IACUC as an “ethics committee.” Following oversight board approval, a survey invitation was sent to members of AALAS Community Exchange and the NABR IACUC-Admin communities in March 2023. The majority of those surveyed affirmed that the work of an IACUC involves ethical deliberation (178/202; 88%) and, to a lesser extent, indicated support for the statement “The IACUC is an ethics committee” (112/198; 56%). Subgroup means were compared based on the following dimensions: IACUC role, age, race, ethnicity, gender, religion, and political identity. While veterinarians (n=68) affirmed the role of ethics in their considerations on the IACUC, more were hesitant to explicitly support designating the IACUC an “ethics committee” compared with those serving in other roles on the committee. These data suggest that most IACUC members believe that their deliberations on the committee involve ethics, and favor labeling the committee as an ethics committee. Questions of how to support the IACUC’s consideration of ethics as well as examination of reasons behind hesitation about the label are presented.

P113 Thinking Inside the Box: Restraint chair enhancements utilized in transitioning toxicology studies from open to closed restraint chairs.

M Page*, C Ferrecchia, M Nevor

Pfizer, Groton, CT

Refinement within animal research methodology and practices is integral to strengthening animal welfare. In an effort to improve both the animal’s experience and colleague safety, research institutions globally are prioritizing enhancements with respect to nonhuman primate (NHP) restraint mechanisms. A 2017 survey revealed that pharmaceutical research facilities utilize open restraint chairs despite data showing that closed restraint chairs improve colleague safety and increase cooperative handling opportunities. Open restraint chairs are currently employed at our facility due to animal accessibility and the familiarity of traditional sample collection. To transition study procedures from an open to closed restraint chair, our goal was to increase accessibility and ease in a closed restraint chair for various procedures including blood collection, oral gavage, and regular maintenance of vascular access ports (VAP). Many commercially available closed restraint chairs are intended for use with larger nonhuman primate species, such as rhesus macaques (Macaca mulatta). Therefore, adjustments were made to improve limb access in the relatively smaller cynomolgus species (Macaca fascicularis) typically utilized in a toxicology research setting. Through continuous modifications, we developed a closed restraint chair in two different sizes for use in both adult and subadult cynomolgus macaques. These enhancements have allowed our facility to complete in vitro blood sample requests, as well as studies utilizing VAP sample collection and dosing across multiple time points. Furthermore, modifications of guided handling into the closed restraint chair were made to transition animals and colleagues from two-pole handling towards a direct transfer from the animal’s home enclosure into the chair. This handling technique lends itself as a transitional step to a fully cooperative handling approach in the future. The modified closed restraint chair provides an operational refinement from open restraint chairs towards safer and cooperative closed restraint chairs.

P114 Surveying IACUC Members on Ethical Deliberation and the Label ‘Ethics Committee’

M Rassette*

Research, Department of Veterans Affairs, Minneapolis, MN

Recent discussion within the laboratory animal science community has addressed the role of ethics in IACUC oversight and how best to acknowledge that role. There are clear opportunities for ethics to impact oversight, as reflected in the requirements for the IACUC to evaluate ‘harm-benefit’ relationships as well as refinement, reduction, and replacement. The perspectives of the IACUC members themselves are important, so this study was designed to survey current and

P115 Feasibility of Awake Imaging Utilizing a Fluoroscopy Transport Cart

S Mustonen*, E Holmquist, J Smith

Research Operations, Medtronic Physiological Research Lab, Coon Rapids, MN

Sedated images are routinely obtained in our facility after a medical device has been implanted. Taking fluoroscopic images requires patients to be placed on a radiolucent table and to do this safely while collecting high quality images, patients are fully sedated. Many times, these anesthetized events are not accompanied by any data collection that would require the patient to be sedated. To decrease the number of sedation events, cost of drugs, animal stress, and technician time, we developed a prototype for a Fluoroscopy Transport Cart (FTC) to obtain fluoroscopic images while the animal is awake. This development also allows us to capture natural movements such as swallowing, GI motility and diagnostic imaging in emergent cases where our animals aren’t clinically safe to sedate. Without the FTC, most facilities have no options for image collection while awake. This leaves a gap in our standard of care for our patients. The FTC needed to be mobile, easily cleanable, accessible for the animals, fit within our mobile C-Arms, and radiolucent in both AP and lateral views. The FTC was designed in a way to fit a large hound, pig (Yorkshire and Yucatan), or a sheep. Imaging procedures using the FTC begin by bringing it to the animal housing, walking the animal into the FTC, while optionally using the accompanying step to decrease the height difference. The cart and animal will then be brought to a procedure room with a mobile c-arm and images can be obtained. The cart can then be brought back to animal housing where the animal can return.
P116 Evaluation of a Novel Anesthesia Apparatus to Perform Breath Holding in Ferrets During Computed Tomography and Magnetic Resonance Imaging

RA Byrum*, K Cooper, J Laux, P Sayre, A Crane, J Wada, VMani, M St. Claire

Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD

Respiratory motion can be an obstacle to obtaining images of acceptable quality during computed tomography (CT) and magnetic resonance (MR) imaging. Artifacts resulting from respiratory motion may be mitigated by respiratory gating or breath holding. Respiratory gating requires specialized equipment/software and typically requires an increase in the time to complete a scan, while breath holding can be performed with equipment that is often already in place in an animal research facility or readily available. A study employing MR imaging in ferrets was designed with a combination of respiratory-gated and breath-hold sequences. The goal of the breath holding was to eliminate respiratory motion in sequences used for quantitative measurements. A breath-holding apparatus for use on intubated ferrets was designed and tested. Specifically, the anesthesia breathing circuit originally included inspiratory tubing connecting a ventilator to one branch of a Y piece, and expiratory tubing connecting the opposite branch of the Y piece to the ventilator. The modification included a four-way fitting on the inspiratory tubing, which allowed connection of a pressure gauge on one side and a breathing bag assembly on the opposite side. Tubing clamps were placed on the inspiratory and expiratory tubes on the ventilator side of the four-way fitting. With this configuration, both lines of the anesthesia circuit could be closed on the ventilator side while simultaneously pausing the ventilator, allowing administration of a positive-pressure breath hold to the anesthetized ferret. The gauge permitted breath holds to be measured and thus limited. Breath holds obtained in anesthetized ferrets using this apparatus were shown to be safe and effective at reducing respiratory-motion artifacts, resulting in reduced scanning and anesthesia time for MR imaging. Higher image quality with improved resolution on CT scans can enhance diagnostic and quantitative evaluation.

P117 Sheep Cuddlers Program Contributes to Animal Welfare and Compassion Satisfaction

C Zegre Cannon*, D Eaker

Laboratory Animal Research COE, BD, Research Triangle Park, NC

Sheep are a well-published preclinical research animal model for development and support of medical devices for FDA (Food and Drug Administration) submission. Their herd and predator/prey behavior must be considered in the laboratory animal environment as stress may cause variability in the scientific data. Caring for research animals may also lead to compassion fatigue among animal care teams and investigators. Consideration of the environment starts with understanding how research animals are housed at the approved vendor. Sheep were hand raised in an indoor and outdoor environment to help develop well socialized sheep for biomedical research. Feed was placed outdoors distant from their home pen area to promote exercise. Once sheep were received in the biomedical research setting, the team identified a dedicated team of sheep cuddlers to continue to provide routine socialization. The program was developed in less than a month, starting with sheep handling and behavior training based upon direct interaction with vendor veterinarians and publications. Cuddling included sitting at the sheep level, tactile sternum rubbing, hand feeding and exercise in a dedicated enrichment hallway with non-slip flooring. One of 3 group housed sheep jumped the animal holding room internal fence when left alone during a procedure wait time, leading to animal welfare concerns. The presence of a dedicated sheep cuddler assigned to each study day led to reduction in observed escape behaviors, stress and increased sheep seeking interactions with animal care staff. The sheep also appeared healthy with minimal reported health concerns. The sheep cuddlers program provided effective sheep acclimation and training to anticipated routines such as premedication, movement to procedure rooms, and minimal handling for daily health exams. Second, the husbandry team could readily move animals outside the animal holding room during daily cleaning as sheep were easily approachable and followed the human team. Last, the sheep cuddler team felt a sense of purpose and contribution to animal welfare, resulting in employee wellness and decreased compassion fatigue.

P118 Ferret Cranial Implant Management

M Carlson*, J Sciurba, J Kopanke, R Alionhart, KE Saunders

Department of Comparative Medicine, Oregon Health & Science University, Portland, OR

Ferrets are a valuable model for auditory behavioral studies, and custom cranial implants allow for measurement of single-neuron activity during auditory processing. Chronic cranial implants are associated with complications including bacterial contamination, infection, and chronic inflammation. These problems can lead to implant failure, lost research time, animal welfare concerns, and early removal from study. To decrease cranial implant-related complications in ferrets at our facility, refinements to post-surgical implant care and routine management procedures were developed. Post-surgically, implants were managed with daily bandage changes, sparing use of gentle saline lavage, and application of an antimicrobial hydrogel to the wound margin. After animals had healed from surgery, routine implant management focused on 4 pillars: hair removal, lavage of the implant margin, cleaning of the implant wall, and topical antimicrobial hydrogel application. A depliated margin maintained around the implant helped reduce the amount of exudate adhered to the skin-implant margin at bandage removal and amount of exudate produced between bandage changes. We instituted two methods of lavage: a
low-volume maintenance lavage, and a high-volume lavage performed weekly. The use of a lower volume maintenance lavage and positive reinforcement during cleaning reduced animal stress associated with lavage of the implant margin. Routine cleaning of the implant wall prevented the build-up of organic material that otherwise may act as nidus for infection. An antimicrobial hydrogel was applied to the skin-implant margin prior to bandage placement. The active ingredient, hypochlorous acid, provides antimicrobial activity without the potential for development of antibiotic resistance. Additionally, hydrogels have been shown to have several beneficial effects in managing chronic skin wounds. In addition to improved cranial implant care, these techniques allowed for management of an animal with chronic multi-bacterial colonization without the use of antibiotics, representing an improvement in antibiotic stewardship.

P119 Using a Culture of Care to Accelerate a 4Rs Approach in Biomedical Research

PV Turner1, J Murray1, C O'Malley1, EA Nunamaker1, W Frieling2

1Global Animal Welfare & Training, Charles River, Wilmington, MA; 2Charles River, ’s-Hertogenbosch, Netherlands

The 3Rs of Replacement, Reduction and Refinement were developed over six decades ago as an ethical framework to incorporate social concerns about animals into the design of experimental work. From the very outset, the 3Rs sought to weave together good science, good care, and socially acceptable practices of animal research. Adding a 4th R of Responsibility is needed to hasten adaptation to changing expectations for laboratory animal care and use and to emphasize the active and personal responsibility of everyone working in biomedical research to engage with the 3Rs. Embracing a 4Rs approach to accelerate change in biomedical research is only possible when there is a strong Culture of Care foundation. This concept reflects that research animals and those working with them are treated in caring ways that are ultimately important to the scientific endeavor. Care, in this sense, is built on four basic dimensions of attentiveness (i.e., paying attention to animals and to employees and the needs of both), competence (i.e., being skilled when technical procedures must be performed to minimize adverse stress on animals), responsiveness (i.e., responding to changes in animals on study and employees working with them to better support their needs), and responsibility (one’s duty and accountability for excellence in all aspects of daily work). We describe an initiative managed by a newly created Office of Responsible Animal Use, which has developed a series of 4Rs global workstreams created to accelerate 3Rs changes, including Scientific Integrity, Alternative Technologies, Study Design, Historical and Digital Controls, Alternative Large Animal Species, and Animal Housing Standards.

P120 Establishing an Innovative Approach for Documenting Semi-Annual Facility Inspections Deficiencies and Conducting IACUC Member Inspection Training

C Starkey*

Research Support and Research Management, UT Southwestern Medical Center, Dallas, TX

IACUCs are required to conduct Semi-Annual Facility inspections for animal housing and surgery areas. How can IACUCs establish a standardized process for conducting inspections, identifying deficiencies and requiring consistent corrective action plans? The IACUC office at UT Southwestern set out to answer these questions and developed standardized training for newly on-boarded IACUC members and created a robust catalog of commonly found deficiencies to establish consistent corrective action requirements and timelines. Firstly, when a new IACUC member is on-boarded, they undergo comprehensive on-boarding training, including how to conduct Semi-Annual Facility Inspections. A unique aspect of the training is educating inspectors on how to behave and interact with laboratory representatives during inspections. The IACUC office has established standard questions that are asked of laboratory representatives during each inspection, which helps to build consistency on how the IACUC evaluates each space. The IACUC office has also standardized the corrective action requirements and timelines for resolving commonly found deficiencies. To establish these criteria, the IACUC office reviewed the past several years of inspection reports to identify the top deficiencies. Then, standardized language was developed and entered into a database to catalog these deficiencies, the corrective actions required, and timelines for correction. These acceptable resolutions and associated timelines were also codified in an IACUC SOP. This streamlined approach has helped to build consistency in addressing deficiencies, as well as reduce administration burden by having easily accessible template language and deadlines to draw from.

P121 Externships to Employment - Forming Collaboration with Local Veterinary Technology Program to Foster Career Opportunities in Biomedical Research

JL Ludwig*, S Allison

Animal Care Program, University of Illinois, Urbana-Champaign, IL

Many institutions employ credentialed veterinary technicians, and it is evident that there is a decline in the number of trained personnel to keep up with programmatic growth and succession. Reviewing our institution’s succession plans, taking special consideration to the biomedical research specialty, it is likely that the opportunities will exceed the number of trained veterinary technicians. Key questions about developing future veterinary technicians in biomedical research include: Where can we recruit? How do we educate in our specialty? How do we promote the positive impact that
veterinary technicians make in our field? Veterinary Technology programs may be the answer. We sought collaboration with a local community college that administers an AVMA accredited Veterinary Technology Program. This collaboration is novel as it embraces the role of veterinary technicians in biomedical research specifically. Polling experiences of veterinary technicians employed by our institution who completed the same local program, determined that careers in this specialty were minimally incorporated in the curriculum and not credited with the potential they held. Goals were to promote transparency regarding the animals’ role in research and through education and experience, recruit more veterinary technicians to the specialty. Our institutions developed a biomedical externship program. We utilized the syllabus from the community college and modified it incorporating content highlighting regulations, occupational health and safety, handling, restraint, and experimental techniques of common research animal species. We merged the course requirements with the day-to-day work performed by biomedical research staff. Throughout the externship, students worked with our veterinary and husbandry teams to experience what a career as a biomedical veterinary technician would consist of. We hosted two students, feedback from both students indicated that their perception of biomedical research was positively changed and that they would likely pursue a career in research. The collaboration shows promise in providing a pathway towards recruitment of veterinary technicians in the field of biomedical research.

P122 Optimizing the impact of habituation for Masked Inhalation Dosing through Positive Reinforcement Training of Laboratory Gottingen Minipigs

T Baez

Large Animals, Labcorp Drug Development, Bayonne, NJ

The use and application of swine as biomedical models has increased significantly over the past 20 years. With consistent advances in research and the decrease in availability of primates and canines, swine have emerged as models for cardiovascular, respiratory, integumentary, digestive and urinary systems. Swine are known to be strong and extremely intelligent with capabilities for memory retention; positive and negative experiences can have a strong impact on their socialization and habituation progress. Working to acclimate and habituate animals minimizes stress and difficulties for technical staff and animals. This allows for ease of restraint and handling for study procedures and animal care, respectively. Lack of cooperation can put both parties at risk of injury and induce stress. Positive reinforcement training (PRT) desensitizes animals to typical stressors such as restraint, moving to a location, or placing a harness or mask for study design and incorporates techniques to reduce the amount of handling needed. A simple, progressive program was developed to train Gottingen minipigs using operant conditioning training, beginning the day after arrival into the facility. This training plan uses PRT to encourage favorable behaviors for a masked inhalation dosing study. The program advances from basic acclimation to the facility with positive human contact, to a series of clicker and target trainings that increase in complexity as individual training goals are met, and finally training towards desirable dosing behavior and study related tasks. The first trial (N=3) was conducted over eight weeks with two sessions for five minutes per day. Within two weeks, the pigs associated a click with searching for a treat in varying locations. Clicks were progressively replaced with verbal cues and the training transitioned to target, mobile target and fixed target at a desired location. This program allowed for the pigs to be trained to walk into a transport cart, stand and hold position on a scale and to be comfortable wearing an inhalation dosing mask. At the end of this program, the data has shown there is a measurable and significant impact on cooperation and socialization of the minipigs with the use of PRT to promote direct behaviors.

P123 Ferret enrichment toy type preference associated with increased positive species specific behaviors

K Mecenas, WK Beah

Small Animal, Bioqual Inc, Germantown, MD

To provide research ferrets with more opportunities to promote species specific behaviors, a short six-week observation study was performed to see which forms of enrichment could be associated with the most positive behavior interactions. We did not remove any enrichment during this study, but rather added in different hanging toys to gauge the interest in manipulable toys outside of a sleeping tunnel/ball and cage-mates. Three different hanging toys were purchased to decide which, if any, were the favorite for manipulation. Twelve pair-housed female Fitch ferrets were observed for interactions with pre-existing enrichment (social-housing and sleeping toys) and new hanging toys. Each cage was observed for 5 minutes, twice a day, three times a week. All cages had matching hanging toys, which were changed out every by animal staff at each cage change of every two weeks. Interactive observations recorded were “locomotory play” (to include sleeping toy and cage mate interactions) with cage-mates (specific behaviors noted), locomotory play with the sleeping toy, “resting” (sleep or otherwise at rest), and “hanging toy” (bell, gem, or jingle). Reliability checks were performed prior to study start for similarity in reporting observations (or lack thereof), with an 89% similarity in observations. Graphpad’s Prism software and Excel were used to analyze data. Data Basic Excel analysis showed that ferrets spent less than half of observations sleeping or in a state of rest (41.86% of total observations), while locomotory play made up slightly over half of total observations (51.58%) and hanging toy interactions were measured at 6.53% of the total observations noted. Measured behavioral interactions showed that social housing was a largely positive impact to the daily welfare of ferrets. For the three hanging toys, the gem was the most interacted with, the bell was second place, and the triangle jingle came in last. According to Prism’s calculations, Post-hoc Tukey tests showed that the gem (33.3%) and the bell (25%) toys were preferred over the Jingle toy (2.8%, p<0.05). Both methods of
statistical analysis results found that ferrets enjoy being able to interact with their cage-mates and sleeping toys, showing little extra attention to hanging toys.

P124 Click It To Trick It: Sheep Training and its Positive Impact on Long Term Residency

BL Morones*

Edwards Lifesciences, Irvine, CA

Animal training aims to condition an animal to cooperate with its trainer to achieve positive behavioral modifications. Clicker training is a well-known technique for animals that are believed to be intelligent, and food motivated. Sheep are mistakenly considered a less intelligent species, resulting in the impression that training is difficult. Their herd mentality and their natural role as a prey species makes them naturally skittish, potentially making routine procedures stressful for all involved. At our facility, a resident blood donor sheep assists with the need of blood transfusions when critically needed. This donor (currently “Dewy”) becomes a long-term resident until retirement. This long-term residency offered the opportunity to explore clicker training in this species. The method was to balance Dewy, a 2-year-old, wether Dorset/Suffolk mix’s motivations with his skittish nature, especially when outside the herd. Enticing Dewy to approach to be touched/petted, then given a food reward completed the positive reinforcement cycle. Once trust was established, (n=14 days) the clicker stimulus was added to que the reward (n=11 days). Next, a target item (makeshift ball on rod) was introduced. When touched by Dewy’s nose, a click was given followed by treat (n= 6 days). Rewards were then given on different schedules (fixed/variable ratio/ interval), strengthening his memory and determination towards goals. Dewy became confident, curious, exploratory, and comfortable outside his herd. Dewy’s accomplishments to date are: targeting, comfortability around staff, turns, circles, reversing, and walking to the scale alone for weigh-ins. Ongoing training includes climbing on stanchions, desensitizing to noise stimuli, and gait training. Overall, Dewy’s modified behavior makes everyday tasks easier and less stressful, provides enrichment, and has instilled a newfound trust and confidence. Clicker training in sheep is not only possible, but it can also be easy and rewarding. This method may be considered for future short-term resident sheep at our facility.

P125 Reduction, Refinement, and the FDA Guinea Pig Maximization Sensitization Test

S FOWLER*, T Moose, A Tillman, K Allmann, D Eaker, C Zegre Cannon, K Crapnell

CPDT, BD, Apex, NC

The Biological Sciences and Laboratory Animal Research teams support the 4Rs of Animal Research. The Guinea Pig Maximization Sensitization (GPMax) test is an FDA standard safety assessment test that is required in medical device development. Refinements to the GPMax test have led to more reliable data and a reduction in the number of animals used in testing. Historically, additional animals were routinely added to GPMax test cohorts to account for animal removal due to approved study endpoints including severe skin lesions, bandage disruption or loss, random animal deaths, and/or other study losses. The Biological Sciences and lab animal care teams worked collaboratively to evaluate refinements under the approved IACUC Protocols. Refinements included: updating the home cage environment from single housed stainless steel wire bottom cages to larger plastic solid-bottom cages, group housing versus single housing, change in orientation of Induction I injection sites to reduce severe lesions due to artifacts of the site, change in wrapping materials to increase comfort and effectiveness, and addition of certified Timothy Hay cubes following bandage removal for Induction II and Challenge phases. These updates have resulted in improved environmental enrichment and behavior management by positive reward and association. The refinements to each GLP Study Phase (Induction I, Induction II, and Challenge phases) have decreased the severity of Freund’s Complete Adjuvant (FCA) induced lesions. The decrease in lesions, the improvements in bandage material and improvements in caging have positively impacted Animal Welfare. In conclusion, the refinements have decreased the number of reported health concerns and the number of veterinary treatments and has reduced the number of research animals used to support GPMax testing by approximately 6% annually. Tracking of this data began in 2018 and shows that the number of animals euthanized due to missing topical patches or severe lesions has decreased from 16 and 9, respectively, to 0. This work supports good Animal Welfare and improved study data quality in support of the 4Rs.

P126 Validating the use of box training as a refinement to rabbit handling

AG Kinally*

Division of Biomedical Services, University of Leicester, Leicester, United Kingdom

In the wild, rabbits are prey animals and so the act of being picked up and handled can be extremely stressful for them. Previous studies in pet rabbits have shown that during the act of lifting, rabbits show signs of struggling and aggression due to fear. This is relevant to the rabbits we house in our facility and can cause unnecessary stress, which potentially will negatively affect the research. In our case, the rabbits are cardiovascular models of Myocardial Infarction and keeping stress levels down where possible is important. We investigated a new method of handling our 12-week-old male New Zealand White rabbits, involving training the rabbits to jump into an animal carrier lined with different vetbed to be transported to their destination – either a playpen or scales multiple times a week. The 2 groups were broken out into groups as follows: Shared vetbed (2 rabbits, vetbed shared between all rabbits and not washed), and own vetbed (3 rabbits - vetbed that was only for the individual rabbit). We trialed several positive incentives
but found the vetbed was the most effective. The rabbits were timed on how long they took to jump into the box with a limit of 3 minutes. Out of the two groups, the shared vetbed was preferred due the desire to investigate the different smells left by the other rabbits when it was presented to them. They consistently got quicker jumping in and would jump in very quickly after it was presented, as well as sniffing, scenting and sitting in the box. The own vetbed group however, lost interest in the box after the initial couple of sessions, possibly because it didn't smell interesting. They were not as excited by it and did not jump in quickly like the other group. Since the initial trial, we have now tried this method with 3 female rabbits and have received positive results from them using the shared vetbed. We also measured the effect of surgery on our MI/SHAM model rabbits and found that during post-op monitoring, they were less likely to jump into the box but quickly returned to jumping in as normal afterwards. We have successfully implemented this as the primary method to handle our rabbits, reducing the stress associated with handling. We have seen an improvement in the rabbit's temperament and they are much less fearful during handling.

P127 Welfare and Enrichment of Yucatan Pigs Post Spinal Cord Injury

E Carefoot*, B Fingiez

UBC, Vancouver, , Canada

The spinal cord injury (SCI) research model in Yucatan swine is used at our facility to improve guidelines for management of patients in the early stages of an SCI and to provide a more complete picture of pathophysiology of acute human SCI. The injury is surgically induced under general anesthesia at spinal cord levels of T2 or T10, causing partial to complete paralysis of the hind quarters. In our experience, the pig’s life post-injury leads to welfare challenges including the inability to express species-typical behavior, discomfort, and distress. Limited resources of standard husbandry practices for post-SCI pigs exist based on our research, so the goal was to develop a program to strive to provide these pigs exemplary welfare. The laboratory technicians collaborated with the research team to create Standard Operating Procedures and recommendations considering the unique needs of the post-injury patients. Special housing is necessary due to the animal’s initial inability to right itself, therefore a dwelling was fashioned using the bottom half of a large kennel. Post-injury pigs are not group-housed, so a minimum of two pigs undergo the SCI procedure in the same week and recover in adjacent dwellings to provide same species companionship. The research team performs behavioral clicker training at regular intervals pre-SCI which is continued post-SCI to provide social enrichment and physical activity. An exercise plan for T2-injured pigs was implemented for further physical activity to address their decreased ability to move. Toys and novel treats are provided on a rotating schedule to encourage normal behavior. To assess patient condition, trained technicians perform frequent scheduled checks using facial grimace scoring guidelines and by recognizing abnormal behavior. A Welfare Assessment Guide was developed to evaluate pig well-being based on species-typical behaviors pre- and post-SCI, and initial analysis found that post-SCI patients score at a similar level of welfare as they did before injury. Through trial-and-error, the care provided to post-SCI Yucatan pigs has been refined, and additional practices will continue to be developed in an attempt to decrease negative stimuli specific to post-SCI pigs and increase their positive welfare.

P128 Development of an enrichment device for Guinea pig in a production room.

S Langelier*, S Gauthier

Production, Charles River Canada, St-Constant, , Canada

Guinea pigs are extremely sociable, very energetic, and intelligent. However, since these animals are considered a prey species, they tend to be neophobic, which makes them fearful and cautious, especially with unfamiliar things or surroundings. We wanted to develop a device that provided our animals, in a commercial production setting, a place to shelter while also functioning as enrichment in a fun and innovative manner. A commercial production setting presents unique challenges. The guinea pig housing, as well as cage density is unlike traditional research settings. Over the years, we have tried several types of enrichment including dumbbells, cardboard and metal teepees and plastic tubes. However, to meet the species affinity to structural enrichment, we aimed to develop a dual device used to both shelter the animals and present as additional enrichment. This device hangs on the edge of the enclosure, resting on the bottom. The shape and position of the structure allowed them to shelter and hide beneath it. The front surface of the device is equipped with a stainless steel 2-inch screw and lock nut, allowing other various types of enrichment to be securely affixed to it. The installation of the block is designed to allow it to spin around on its axis, serving as an interactive source of enrichment. The additional piece of enrichment we selected was a hay block made of compressed Timothy hay. The hay block can be eaten and serves as food enrichment. Furthermore, having the hay block presented on the shelter and away from the bottom of the cage limits soiling and makes it easily accessible. We have successfully incorporated the use of this innovative dual-purpose device in our stock and breeding cages. Animal care technicians observed the animals after installation of the novel enrichment device where the animals were observed using the dual-purpose device. They were observed sheltering and the hay blocks were consumed. We subjectively concluded this innovative device is encouraging their natural behaviors by serving a dual purpose and works well in our high throughput, densely populated production setting.
P129 Establishing a New Method of Bone Marrow Isolation to Significantly Improve Donor-Recipient Ratio In A High Throughput Environment

C Smith, A Brigman, K Coppage, C Clouse*, C Currie, F Zhao

Discovery, Charles River Laboratories, Durham, NC

Charles River Laboratories (CRL) works on a global scale to deliver high quality data from animal studies. This high throughput requires maximum economy of motion as well as tight consistency in technical procedures. CRL Discovery is dedicated to improving and reducing animal usage for our Graft versus Host-Disease (GvHD) models. These studies involve recipient mice undergoing myeloablative radiation treatment. They then receive a therapeutic intravenous injection of bone marrow and splenocytes isolated from other, healthy mice (donors, with minor or major MHC mismatch). We instituted a new, time-neutral method of bone marrow collection in C57Bl6 mice to reduce the number of donors needed. The standard method involved transection of the diaphysis in the bilateral femurs of euthanized donor mice (n=8). The femurs were then flushed with 1-2 mLs of cold PBS. In the new method (n=8), a single pilot hole was drilled through the proximal epiphyses and tunneled out through the distal epiphyses. The bones were flushed until translucent or white. This new method was evaluated by use of bilateral femurs and with the addition of bilateral tibias sourced from euthanized donor mice. Fetal Bovine Serum (FBS) was also added to a 2% concentration into the cold PBS to improve cell viability. The standard method took approximately three minutes per animal to perform. The new method took approximately six minutes per animal to perform. The standard method required 3 donors for every 2 recipients. The new method (with the addition of the bilateral tibias) allowed for 1 donor for every 5 recipients. There was a significant increase in the number of bone marrow cells harvested that allowed for an 87% reduction in the number of donors required. This new technique was simple to institute, easily retained by technical staff, required minimal new reagents, and significantly reduced the numbers of animals required for donation when performing GvHD studies in mice. The increase in time spent per animal was offset by the improvement in overall donor to recipient ratio. Future studies will investigate the utility of cryopreserved bone marrow. Additionally, characterization of in-house bone marrow transplants will be correlated to different clinical presentations of GvHD.

P130 Easing Compassion Fatigue

S Oldham1*, K Bell1, K Nacel1, E Straley1, L Sheldrake1, G Harkins2, A DeSantis2, R Kastenmayer1

1Animal Sciences & Technologies, AstraZeneca, Gaithersburg, MD; 2Astra Zeneca, Waltham, MA

Most professionals in the in vivo research community share a common goal of helping people and animals. The ability to feel empathy for others and animals, to care deeply for research animals, and the goal of advancing science are common traits among individuals in this community. When combined, however, they can be a challenging and exhausting endeavor. Compassion fatigue is characterized by physical and emotional exhaustion, a change in the ability to feel empathy, depression and more. To help combat this, AstraZeneca has developed internal compassion fatigue resiliency programs that include a wide range of resources for employees. These resources raise awareness, advocate for employees, and build upon our Culture of Care. Mental, emotional, and physical health and well-being resources are available. In addition, educational webinars, process improvements, periodic surveys, brain breaks and honest sharing are also part of our programs. All animal care staff, managers, trainers, scientists, and IACUC members may participate in whichever components of the program they desire and participation is not mandatory. One main objective of our program is to promote our resources to help and support all people involved, so that they may in turn support each other. Another is simply raising awareness around compassion fatigue and designing activities and resources to promote resiliency. Qualitative and quantitative endpoints were measured through a baseline, 6-month, and 1-year survey on CF resiliency. Survey results showed that several areas of interest are improving. We observed increased staff understanding of the definition of CF, knowledge of strategies to combat CF, and implementation of the strategies. In addition, there is decreased perceived stress and increased resiliency. Survey participants reported positive feedback, such as “I appreciate being able to speak more openly” and “it reassures that the feelings I have are not only for me, but for other people going through similar situations.” Our compassion fatigue program is designed to lead to better employee experiences, animal care, scientific quality, and an overall better workplace.

P131 Novel Enrichment Devices for Pregnant Ewes and Lambs

S Stephens*, O Hughes, M Dapore, CM Doerning

Veterinary Services, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH

Cincinnati Children’s Hospital Medical Center is a leader in fetal and placental research, and pregnant sheep models are commonly used to develop surgical therapies for fetal congenital conditions. Veterinary Services receive timed-pregnant ewes for these studies and houses them in an indoor vivarium for the remainder of their gestation. Sheep are a prey-species and shipment and acclimation to an unfamiliar environment can be a significant period of stress. Observed stress behaviors of ewes includes being unapproachable by animal care technicians and displays of aggression such as headbutting and stomping. Newborn lambs face their own unique stressors, such as social deprivation when a study requires hand-rearing due to attrition or rejection by the ewe. In order to minimize these stressors, we focused on developing and refining novel environmental enrichment items for both pregnant ewes and neonatal lambs. Enrichment for pregnant ewes engages multiple senses, promotes a low-stress
environment, and creates more positive social interactions with their care team. Novel enrichment for neonatal lambs is designed to promote social bonding in situations where a foster ewe is not available. Following the implementation of this enrichment, we have seen an increase in proxy indicators of improved animal welfare. For ewes, this includes increased frequency of affiliative behaviors such as voluntary approach to caretakers and duration of caretaker interaction, and a decrease in agonistic behaviors of head-butting and stomping. We have also observed an increase in direct interaction time with enrichment and increased frequency of conspecific play behavior such as frolicking. In offering enrichment to the lambs, we have observed imprinting on caretakers, decreased frequency of vocalizations when housed with a surrogate device, and increased time at rest instead of pacing. Using an enhanced enrichment program designed for these two critical life stages of sheep in our vivarium has improved the complexity of interaction and time spent interacting with environmental enrichment relative to the past. This initiative has resulted in improved wellbeing of both the animals and those who care for them.

P132 Evaluation of abnormal behaviors in two singly housed macaques pre- and post-social introduction: A case study

M Vogel¹, K Thurman, A Sorrells
Animal Care, Neuralink, Fremont, CA

An essential component of psychological wellbeing assessments of macaques in research is the ability to adequately monitor behaviors and properly intervene if abnormalities arise. Among the most commonly observed abnormal behaviors in laboratory macaques are motor stereotypies, defined as repetitive movements of part or all of the body, and hair plucking, defined as removal of hair using teeth or hands, sometimes causing alopecia (Lutz et al. 2022, Polanco et al. 2021). A literature review confirms socially housed macaques engage in significantly less abnormal behaviors than singly housed macaques. However, previously published studies utilized 5- to 10-minute behavioral scans quarterly to yearly, which may under-report the presence of abnormal behaviors (Lutz et al., 2013, Kroeker et al., 2017). We present a case study of two male rhesus macaques (M. mulatta) that were observed to engage in abnormal motor and hair plucking behaviors prior to being socially pair-housed. Our hypothesis was supportive of previous findings but utilized a more rigorous scanning strategy: Introduction of a compatible conspecific should decrease the frequency of abnormal behaviors, and alopecia scores should improve post-pairing. To achieve this, the frequency and duration of self-grooming, hair plucking, and motor stereotypic events were continuously sampled for each monkey’s 12-hour light cycle for five days before and five days after the introduction of a social pair. Additionally, a one-year follow-up time point was evaluated for existing compatible pairs using continuous scanning for 5 days. Nonparametric analyses revealed that duration and frequency of self-grooming behavior trended but did not significantly decrease in both animals after pairing. One motor stereotypic behavior, but not all, decreased significantly in one animal. Our results suggest that socialization is only one component of a rigorous, multifaceted program to reduce abnormal behaviors in macaques in a research setting. An intervention we will evaluate in the future is a schedule choice program to increase animals’ ability to make choices about their day. We finally conclude that more frequent observations are needed to confirm the proper interventions are conducted for abnormal behaviors.

P133 Managing Social Contact for Macaques on Infectious Disease Projects

JP Thom¹, RU Bellanca¹, SW Lee¹, GH Lee¹, V Nelson²

¹Behavior Management Services (BMS), University of Washington National Primate Research Center, Seattle, WA; ²Dr. Hans-Peter Kiem Lab, Fred Hutchinson Cancer Research Center, Seattle, WA

At the Washington National Primate Research Center, Behavioral Management Services provide enrichment opportunities vital to the human and ethical care of our nonhuman primates. We place a significant focus on providing social contact to primates because it is dynamic, thus habituation is less likely in comparison to other forms of environmental enrichment. Since the official implementation of our behavioral management program in 1997, support for socialization in infectious disease research has increased as principal investigators recognize the key role tactile social contact plays in preventing or ameliorating stress, which in turn, creates better research models. For some projects, however, valid concerns of inadvertent virus transmission remain. Here, we discuss how we implement and manage socialization options for primates assigned to infectious disease projects without confounding research results. An understanding of the research study and its timeline along with in-depth communication are necessary for success. Infectious disease studies during 2020-2022 were categorized into eleven categories (e.g., Covid, Malaria, SHIV/HIV/SIV, SHIV studies involving tether) and summarized with regard to the percentage of primates assigned, what timepoints in the study allowed tactile social contact, and what level of social contact was permitted. All projects allowed full contact at some point. Projects in two of these categories allowed full contact for the entirety of the study. Animals associated with the SHIV/HIV/SIV and SIV-ZIKA co-infection categories reverted to protected contact during the viral challenge phase. The remaining seven categories had some phases where no social contact was allowed. We are sharing this information because an increase in scientific peer-reviewed publications and presentations will familiarize new scientists with how other researchers are conducting similar studies. This may encourage them to consider incorporating socialization in their research design. As we illustrate here, socialization in infectious disease projects is an attainable goal.
P134 A practical approach to the assessment of mouse enrichment types in a large research program

JN Camacho*, W Chan

Center for Comparative Medicine, Massachusetts General Hospital, Charlestown, MA

Mouse enrichment is “complex” with many variables that affect how the animals respond, including strain, phenotype, age, gender, as well as housing density, cage size and quality of the space. Many studies have been conducted with varying results on impact and benefit to the mice and to the study outcomes. As the Guide notes, “…it is difficult to compare these studies due to the study design and experimental variables that have been measured,” and as such the benefits and potential impacts of enrichment in mice “remain complex and should be carefully considered.” Our institution houses more than 30K cages of mice, representing diverse models and species demographics. Our standard enrichment for mice includes nesting material and shelters. When stereotypies present, one possible intervention option is to provide additional or different enrichment types. Given the many different choices of enrichment, it is difficult to know what enrichment to choose or how to evaluate it. Therefore, we developed criteria to make practical assessments of various enrichment types. Criteria for evaluation were simplified into a quantifiable scale so that assessment, involving varying cage demographics, can be assessed in a practical way to produce quick and reliable outcomes. Assessments consisted of video recording, pictures or direct assessment of at least 8 cages for 10 enrichment assessments, evenly spaced at the start, middle and end of the 2-week cage change cycle. Quantitative scales were used (1- least desired, 3- most desired) to assess visibility of mice for health, usage or nest score and proximity of nest in cage or with device. The development of this assessment criteria was made utilizing veterinary student interns, and later used by animal care staff as a routine part of the program. This assessment allows us to effectively highlight areas of concern, reveal disparity in usage between strains and help guide items selection. Initial assessment of enrichment to address stereotypies has mixed results, but we are hopeful that continued assessments will reveal opportunities for positive outcomes. The simplified approach can be adopted by others as a method for assessing enrichment and educating staff about the complexities of enrichment in mice.

P135 Implementing Desensitization as Part of Rat Toxicology Studies

C Richard*, T McShane

Drug Safety Research and Development, Pfizer, Groton, CT

Pfizer recently developed a Rodent Refinement Committee with a focus on improving rodent handling. A study was conducted to evaluate the effectiveness of pre-study habituation to novel toxicology study activity locations through active desensitization. A total of 48 rats were evaluated; 24 control rats who received no desensitization and 24 experimental rats who received desensitization for either 4 or 10 days. The following measures were evaluated to determine the effectiveness of the desensitization: Animal location in home cages when approached by technician, fecal output while in holding areas, number of treats eaten while in holding areas including latency to begin eating treats, and number of animals per home cage to eat treats from the technician’s hand when placed back after completion of study activities. Animals receiving desensitization were in the front half of the home cage when approached by technicians 85% of the time compared to 69% of the time for control animals. Control animals defecated three times more frequently than desensitized animals in holding areas. On average, desensitized animals would begin eating treats at approximately 32 seconds after being placed into novel holding areas while control animals would average 106 seconds. On average, 1.2 control animals per cage would accept treats from technicians’ hands more readily when placed back into home caging compared to an average of 2.1 desensitized animals. Active desensitization was similarly effective in both the 4-day and 10-day trial. Habituation to study activities prior to Day 1 of toxicology studies is beneficial to animals and technicians, aligning with Pfizer’s commitment to best animal welfare practices.

P136 Fully Automated Micromanipulation: Genetic Modification of Mice by Automated Solution Injection

T Eto1, H Ueda2, R Ito3, T Takahashi1, T Watanabe1,3, M Goto1, Y Sotomaru4, N Tanaka2, R Takahashi1

1Central Institute for Experimental Animals, Kawasaki, Japan; 2NSK Ltd., Kanagawa, Japan; 3National Center for Child Health and Diseases, Tokyo, Japan; 4N-BARD, Hiroshima University, Hiroshima, Japan

Genetically modified mice are essential experimental materials for biologic, medical, and pharmaceutical research and development. These mice are produced mainly by manual zygote micromanipulation, but reproducible micromanipulation requires specialized techniques performed by a skilled microinjectionist, which impedes the efficiency of the procedure. To improve the efficiency of genetic modification procedures, we developed a fully automated micromanipulation system for injecting solutions into the mouse zygote pronucleus. We first determined the entire sequence of the procedure (determining the start and end of the manipulation, identifying the zygote and pipette positions, clarifying the manipulation, and executing the manipulation). For one zygote, 11 to 13 steps are required for microinjection. We next constructed the motorized hardware. A computer analyzes the information input from a microscope camera and issues commands to the output device, which drives the motorized parts (manipulator, sample stage, pump, injector). We then
developed software to control the system (zygote recognition by computer, movement of pipette and zygote, rotation of zygote to move pronucleus to a position where pipette can be inserted, correction of pipette insertion position, and injection of the solution into the pronucleus). By integrating the software with the hardware, we successfully developed a fully automated micromanipulation system. The fully automated micromanipulation system was applied to genetically modify C57BL/6 strain mice. Three types of genetically modified mice were prepared by applying the traditional DNA injection, piggyBac Transposon system, and CRISPR Cas9 system. The genetic modification efficiencies (zygote survival after injection, offspring, and genetically modified mice) of microinjection by a skilled microinjectionist injecting the solution manually were the same as those performed by the newly developed, fully automated micromanipulation system. We believe that this new method is a useful addition to the genetic modification technologies available for experimental animals.

P137 Modified Rabbit Sling for Forelimb Orthopedic Procedures

JM Collins*, L Bird

Office for Research, Rutgers University, Edison, NJ

Orthopedic procedures are a necessary step in the testing of new surgical techniques, implants, and other devices. Though the experimental surgeries involved are complex, it is often more difficult to prevent post-operative complications. Casts can be particularly challenging to maintain for prolonged periods of time as bone heals. As part of an IACUC-approved protocol, we performed orthopedic surgeries on rabbits where a portion of the radius was removed and replaced with an implant, requiring placement of a post-operative forelimb cast. There are a multitude of approaches to placing a cast in a variety of species but to our knowledge, there are no techniques available to prevent slippage and removal of casts in rabbits. Our first set of surgeries were successful, and casts were placed comfortably, but a few anxious rabbits were able to remove their casts, risking ulnar fracture and subsequent euthanasia. Initially, we attempted pharmaceutical restraint to replace the casts, but we did not feel comfortable repeatedly administering sedatives and anxiolytics to the rabbits. One rabbit removed its cast daily for the first three days in the post-operative period, and even removed its cast immediately upon waking from sedation for a cast replacement. There was discussion about removing this rabbit from study and possible euthanasia because of its repeated need for sedation and risk of self-harm. After several attempts, we developed a modified over-the-shoulder sling, meant for post-operative care and management of rabbit forearm surgeries requiring cast placement. This new technique, along with improvements to the casting procedure, has prevented further cast removal for all 15 post-surgical rabbits since its final revision. Refinement of the casting process with addition of the sling has led to improved stability of the casts, a reduction in sedation to replace removed casts, and significantly less handling stress and restraint of the rabbits. The sling is comprised of simple materials found in most veterinary facilities and has a straightforward design, so this technique can be easily taught to most veterinary staff. The use of this modified sling will help prevent post-operative casting issues, excessive sedation, and even euthanasia in the case of fracture.

P138 A Spotlight on Rodent Enrichments Role in Openness, Transparency and Culture of Care

M Gerhardt*, K Greatsinger, H Whiles, J Arnold, J Cooney-Walsh

Research Operations, Alexion Pharmaceuticals, New Haven, CT

Openness and transparency have become a priority within the lab animal industry. Often the public is misinformed to believe animal research is cruel and unkind, conducted by scientists who don’t care about the animals. It is now our turn, as lab animal technicians, to share the truth and passion that goes into caring for our lab animals. Over the last two years the Lab Animal Resources (LAR) group at Alexion, AstraZeneca’s Rare Disease Unit have used a virtual technology to offer augmented reality tours of their vivarium and introductions to their research animals. The target audience has been high school and college students. Students have been exposed to purpose breeding of rodent colonies, discussions of phenotypic mice to better understand human disease models, animal handling and enrichment. Feedback gathered from post event surveys of our first virtual tours proved that there was a positive impact on the impression of the students’ views on animal research. Each event collected feedback after the events from ~100 participants as well as live feedback during our Q&A sessions. For one event, all participants were required to write an essay. Each essay focused on how the virtual experience changed their view of animals in research. In response to this feedback the LAR team shared a live demonstration of rat tickling and the vocalization software used to determine positive vs. negative rat vocalizations in a virtual presentation. During this presentation the bond between our rats and their handler was obvious to all participants. Much of the feedback received via a post event survey noted the happiness of the rats and the connection they had to humans. These positive experiences in sharing our facility and our techniques have had a large impact on the culture of care within our facility. We have found sharing play and enrichment for animals has created a commonality for the public and can be used to bring greater understanding to why animals are used and how they are cared for in research. In the events we conducted virtually last year we were able to reach over one thousand participants outside of the lab animal field and several hundred in our own global organization.
P139 Implementing the 3Rs by Establishing a Training Rabbit Colony

K Harringer, R Hudson, AK Darbyshire

1Comparative Pathobiology, Purdue University, West Lafayette, IN; 2Office of Research, Purdue University, West Lafayette, IN

Training students, husbandry staff, and investigators in the current best practices for animal-related procedures is critical to the welfare of animals. Prior to 2022, 12-16 rabbits were purchased every year for training use at Purdue University, primarily for training veterinary nursing students. To reduce the number of rabbits utilized for training, and open the resource to others across campus, the Laboratory Animal Program started a training colony of 12 New Zealand White rabbits. These rabbits will be housed for a maximum of 3 years, with 4 new rabbits added to the colony each year, while 4 older rabbits are retired and adopted as pets. The rabbits are pair housed with one neutered male and one spayed female in floor pens to provide additional space for long-term housing. Positive reinforcement training and human interactions are regularly provided during husbandry and veterinary procedures to reduce stress and better acclimate the animals to handling for training classes. Prior to the start of the colony, the veterinary nursing team used rabbits for 4-6 training labs each year. The LAP colony was used for 6 training sessions in 2022. The veterinary college and student clubs also now benefit from the use of the colony. Use is limited to minimally invasive procedures such as injections, blood draws, and anesthesia training. A fee is charged to users per rabbit for each day of training, which includes a downtime of one week between uses, and ensures that the cost remains significantly less than the cost for the investigator to purchase the animals themselves. The colony embodies the 3Rs by reducing the number of animals needed each year by up to 75% and refining animal welfare via space, enrichment, positive reinforcement training, and socialization.

P140 Novel Method for Repairing Female Rabbits After Two Week Separation

A Napolitano, M Muniz, P Shipkova, F Landry, D Shuster, R Donocoff

Bristol Myers Squibb, Hamilton, NJ

Social housing in research animals has numerous benefits, including affirming species specific behaviors, providing enrichment, and encouraging activity and should be provided when possible. New Zealand White rabbits (Oryctolagus cuniculus) are social species that greatly benefit from being housed in groups/pairs. However, specific research goals may prohibit pair housing animals, including collecting urine and feces, prohibiting contamination of animals in distinct groups, and observing study related effects on individual animals. Although there has been success with pairing rabbits, often rabbits remain singly housed once separated. Disruption of the established social order in this species, such as when animals are separated during studies, can lead to aggressive behaviors when animals are reintroduced. The goal was to determine if previously housed female rabbits could be re-paired after spending two weeks in separate cages for the duration of a study that required singly housed animals. Rabbits were in separate cages throughout the study with a barrier that allowed for visual access. Multiple methods were attempted to re-pair animals – the most favorable pairing method involved pairing animals at time of cage change. Animals were introduced in a large neutral space with enrichment. After multiple affiliative interactions were noted in neutral space, animals were placed together in a clean cage. Animals were monitored to ensure no aggressive or adverse behavior was noted including chasing, thumping, or signs of distress. Feces was collected when animals were initially paired, during pairing process, and after pairs had been established to assess stress response via fecal cortisol tests during these phases. Of 14 individual animals that were attempted to be re-paired, 5 successful pairs were established resulting in 71% of the separated colony in pairs and 74% of animals imported as pairs remaining paired. Four of the pairs were re-paired at the first attempt, and one of the pairs required two attempts before being successfully re-paired. Fecal cortisol assays are pending. Animals are still successfully paired 4 weeks after re-pairing. This success of re-pairing indicates rabbits separated for study needs can be successfully repaired after the study has concluded.

P141 Current Demographic Makeup of IACUC Members in the United States

M Rassette

Research, Department of Veterans Affairs, Minneapolis, MN

Promotion of a diverse, equitable, and inclusive environment is a goal shared by many in laboratory animal science. Progress towards that goal requires benchmarks regarding diversity within the field, including demographics of oversight bodies such as the IACUC. However, data describing the current demographic makeup of IACUCs is limited. This study aims to provide initial data regarding the demographic makeup of current IACUCs in the United States by leveraging information from a dataset created to query committee members on ethics. This dataset was created by inviting members of the AAALAC Community Exchange and the NABR IACUC-Admin communities to participate in an anonymous online survey in March 2023. The survey gathered data on current members of IACUCs in the U.S., including age range, gender identity, race, ethnicity, religiosity, and political leaning. These data were compared against benchmark data on diversity within the field, including demographics of oversight bodies such as the IACUC. For comparison, data on U.S. college faculty showed 74% identifying as white and 47% as female, while the general population identified as 62% white and 51% as female. Efforts to promote diversity within laboratory animal science,
P142 Institutional Officials Consortium (IOC): An Industry Consortium for Collaboration in Animal Welfare, the 3Rs, and Openness about Biomedical Research

JL Lofgren, A Myers, M Burns, J Poling, D O’Connell, C Winnicker

Animal Welfare Compliance, Novartis Institutes for Biomedical Research, Cambridge, MA; 1IO Consortium (IOC), Washington, ; 1Animal Welfare Compliance, Eli Lilly and Company, Indianapolis, IN; 1Animal Welfare, AbbVie, Worcester, MA; 1Animal Welfare, GSK, Philadelphia, PA

Animal care and use programs in industry (pharmaceutical and biotechnology companies, contract research organizations, breeders of animals needed for research) face many of the same challenges and opportunities. Desire for competitive advantage may make industry organizations reticent to share best practices. However, optimizing animal welfare, advancing alternatives and the 3Rs, and communicating to the public why and when animals are still needed for the discovery and development of new therapies is pre-competitive. In this spirit, the Institutional Officials Consortium (IOC) was created as a formal organization where industry peers in animal welfare can work together. IOC supports and synchronizes programs ensuring ethical engagement with animals in pharmaceutical and biomedical research, highlighting alternatives to animal research and supporting implementation of the 3Rs principles, public and factual communication around research, broadening public understanding about the benefits and necessity of animal-based research, and aligning support for pro-research advocacy organizations. Each priority is associated with a working group. IOC holds biannual meetings to assess progress on these working group initiatives, to provide strategic input to research advocacy organizations, and to assess deliverables. Among many deliverables from the working groups in 2016 – 2022 are strategy tools to address challenges to research with animals, guidelines for implementing an Animal Welfare Office, benchmarking and communication platforms, recommendations for internal communication on animal-based research, an annual summit for communications, public relations, government affairs professionals at member organizations, and multiple new public websites on the direct benefits of research to animal and human health. IOC member companies benefit from a network to benchmark with one another, access to exclusive materials to enhance support within a research environment, and participation in recommendation and resource development for organizations and communities on positive, thoughtful, and open sharing within this topic. IOC welcomes the opportunity to engage in open dialog through benchmarking and best practice sharing for all research settings.

P143 Refining Rat Management Programs Through Stakeholder Focus Groups

C O’Malley, PV Turner

1Global Animal Welfare and Training, Charles River Laboratories, Wilmington, MA; 1Pathobiology, University of Guelph, Guelph, , Canada

Rats are an important species for biomedical and scientific advancement, and therefore there is an ethical obligation to provide good welfare, housing, and support for every life stage. For the 2020 Lunar ‘Year of the Rat,’ a global initiative to develop recommendations and best practices for rat care was started through the Rat Welfare Working Group. A list of recommendations was developed through stakeholder focus groups of subject matter experts for topics related to rat behavioral management, procedural refinements, recognition of pain and distress, euthanasia procedures, and welfare assessment. Subcommittees met virtually from 2020-2022, and a virtual Rat 3Rs Workshop was held in 2021 to further discuss refinements for rat care and management. The Rat Welfare Working Group developed 12 recommendations based on discussion and consensus building. The recommendations were then discussed with corporate leadership to achieve buy in and support across business units. The recommendations will be used during regular site visits to monitor rat programs over time as sites work to implement refinements and will ultimately be used to develop a rat welfare assessment tool to allow sites to quantify their rat management programs and identify areas for improvement.

P144 Tunnel Handling Mice Has Minimal Impact on Cage Change and Cage Wash Time

H Arnott, K Wood, K Snead, J David, L Garcia Menendez

Comparative Medicine, Amgen, Simi Valley, CA

Traditionally, mice are handled and moved by grasping the base of the tail. Previous publications have shown that this can elicit an aversive response and invoke anxiety. Published refinements to mouse handling report that moving the animals without the use of the tail can increase voluntary handler interaction and lower anxiety as measured by an elevated plus maze. One refinement (3Rs) is the use of tunnels. While the welfare benefits of this method have been validated by prior work, little information exists on the operational impact of tunnel handling. We completed time in motion studies to assess the workload impact of tunnel handling on cage change out and cage wash operations. We evaluated the time to change individual cages of different strains of mice: BALB/c, NOD SCID, Athymic Nudes, and C57BL/6 (N = 10 cages/strain). In addition, we assessed cage change time for C57BL/6 in both single and group housed settings (3 per cage). Reusable plastic or disposable cardboard tunnels were placed in each home cage.
and remained for eight weeks with a change out for clean tunnels at the fourth week. Original and replacement tunnels were disposed of or washed, with cleaning and disposal times recorded. Cage change times were also recorded as a separate data set over the eight-week period. During the first week – when the mice and handler were inexperienced with the tunnel – the cage change times were significantly greater than tail handling. By the second week and beyond, change times for 4 of the 5 groups took similar or less time than tail-handled mice. BALB/c were the lone exception that retained longer change out times. Tunnel handling can be successfully incorporated into operational workflows with minimal impact after the initial investment in training staff and acclimating mice.

P145 Comparison of Plastic and Metal Oral Gavage Needles in C57BL/6 Mice

J Herrod1, J Maye1, I Kim1, CC Vernon2, L Healy2, L Bates2, LM Stanislawczyk2, M Sowick2

1Discovery Toxicology, Bristol Myers Squibb, Princeton, NJ; 2Veterinary Sciences, Bristol Myers Squibb, Princeton, NJ

Oral administration is one of the most common routes of dosage, with oral gavage being the most frequently and widely performed technique in biomedical research. In rodents, the use of gavage needles is required for accurate dosing due to their small body size. Metal ball-tipped gavage needles have been historically used and preferred by researchers, but their use has been shown to cause complications including trauma and aspiration pneumonia. Recently, newer polypropylene plastic needles have been introduced as an animal welfare refinement. While these needles have been observed to cause fewer complications, evidence of the benefits compared to metal gavage needles is lacking. In this study, we evaluated the clinical effects of metal ball-tipped gavage needles compared to plastic gavage needles in mice. Thirty, male, C57BL/6NCrl mice (8-9 wks old, 25-35g) were randomized and allocated to ten mice per group (metal gavage needles (20g), n=10; plastic gavage needles (20g), n=10; no gavage, n=10). Animals in the metal and plastic gavage groups were restrained and dosed with 10mL/kg drinking water daily for five days, and animals in the no-gavage group were briefly restrained. Blinded clinical observations were made daily following oral dosing, and body weights were collected prior to dosing and on days five and seven. Animals were euthanized on day seven and tissues (esophagus, stomach, trachea, lung) were collected for histopathology. Microscopic evaluation revealed all mice in the metal gavage group had minimal-moderate degeneration and necrosis of skeletal muscle with mixed cell inflammation. These findings were consistent with a trauma-related injury. This was different from mice in the plastic gavage and no gavage groups (Kruskal-Wallis, p<0.001). Body weight was decreased between the no-gavage group and the plastic and metal-gavage groups (Kruskal-Wallis, p=0.003). Finally, there were no differences in clinical observation scores (Kruskal-Wallis, p=0.2). To our knowledge, this is the first study that directly compares plastic and metal gavage needles in mice. Overall, the results of this study indicated that plastic polypropylene needles offer a refinement to oral gavage dosing in mice and improve animal welfare when compared to metal gavage needles.

P146 Refinements in Rabbit Cage Change Procedure

A Napolitano*, M Muniz, P Shipkova, F Landry, D Shuster, R Donocoff

Bristol Myers Squibb, Hamilton, NJ

Refinements in cage change procedures can significantly impact husbandry practices to benefit both animal care staff and animals. Current practices in many facilities housing laboratory rabbits (Oryctolagus cuniculus) involve physically removing animals from soiled caging and placing them in sanitized cages, resulting in stress to the animal and potential ergonomic injury to technicians. We sought to reduce stress in New Zealand White rabbits and increase efficiency and husbandry ergonomic safety during the cage change process. Commercially available Techniplast cages enabled the development of a novel method to transfer rabbits during routine cage change. The cages are attached via lateral connections and the divider is immediately removed, allowing the animal to freely transfer to the new cage without manipulation. Once animals move into the new rack the divider is replaced so the rabbits remain in the new cage. This is also a form of enrichment, providing increased space and promoting exploratory behavior. The following variables were measured to assess which method was preferred. The time required for cage change, fecal cortisol levels for three days post cage change, and any differences noted in paired and singly housed animals. A total of 28 (10 single and 18 pair-housed) animals were assessed. The novel stress-free method with no animal manipulation was completed in 60 minutes with a mean time of 44s per pair or singly housed rabbit transferred, compared to 90 minutes with a mean of 51s for animals manually moved to the clean cage. The new method took significantly shorter time than the previously used method (p < 0.05). There was no significant difference between paired and unpaired animals. Fecal cortisol assay results are pending. After physically transferring animals, the technicians observed rabbits thumping the rear feet, a defensive behavior, and no thumping was noted when animals moved without manipulation. Ergonomic injuries while physically transferring animals are alleviated with the new method, which does not require repeatedly bending down, reaching into cages, or picking up animals. This novel stress-free cage change procedure has reduced stress within our colony, enhanced the ergonomic safety of technicians, and increased efficiency.
P147 Assessing Stress Impact and Subcutaneous Dosing Effectiveness of a Scruffing Restraint Device in C57BL/6J Female Mice

KE Benjamin1, J Dunbar1, H Kim2

1Comparative Medicine, Pfizer, Cambridge, MA; 2Novartis, Cambridge, MA; 3Charles River Laboratories Inc, Cambridge, MA

Safety, competency, and animal welfare are priorities when training individuals in handling laboratory rodents for experimental use. Our training program routinely searches for opportunities to further the 3R’s (Replacement, Refinement, Reduction) to continuously improve animal welfare. As a potential refinement, we evaluated the use of a commercially available mouse scruffing restraint device within an in vivo research environment. The device is meant to assist handling mouse research models by allowing for safer manipulation when restraining or dosing. The goal of the experiment was to evaluate the effects of the scruffing device on mouse stress levels after subcutaneous dosing compared to a general, manual restraint that did not utilize the device, as well as the effectiveness of the aid by monitoring dosing time and accuracy. Our hypothesis was that the group dosed with the scruffing device would have lower levels of circulating serum corticosterone and that the accuracy of dosing would be increased. Two groups (n=10/group) of C57BL/6J female mice were subcutaneously dosed with and without the device. Dosing time and unsuccessful dosing tallies were recorded to assess speed and accuracy between the two groups. Additionally, blood serum corticosterone levels were tested at the conclusion of the experiment to assess rodent stress. It was discovered that although there was neither an improvement nor worsening of dose success and accuracy, the use of the scruffing device did generally allow for faster dosing without adverse event. Over the course of the study, group one was dosed within a range of 3 minutes, 10s to 4 minutes, 16s, while animals in group two were dosed within a range of 2 minutes, 25s to 3 minutes, 30 s. Furthermore, the experimental results show that serum corticosterone levels were significantly decreased when the scruffing device was used for subcutaneous dosing compared to general restraint methods. Mean corticosterone levels for mice in group one (general restraint) was 60.92 ng/mL, while mean corticosterone levels for mice in group two (scruffing device) was 42.46 ng/mL, indicating that the mice experienced dosing as a less stressful event when the device was utilized.

P148 Training Rats to Voluntarily Change Cages Using a Tilt Technique

CA Payne1, LV Kendall2, JK Willis3

1Clinical Sciences, Colorado State University, Fort Collins, CO; 2Laboratory Animal Resources, Colorado State University, Fort Collins, CO; 3Biology, Colorado State University, Fort Collins, CO

Changing cages is a frequent and stressful event for laboratory rats. Training rats to voluntarily move between cages eliminates handling, which makes cage changes a more positive experience. The proposed method uses a cage tilt between the home cage and the training cage to quickly train rats to move over within one week. Long Evans rats were used (8M, 8F) for the training protocol due to their better adaptability. Rats were trained using a 45-degree tilt between the home cage and the training cage (n=4), or a 90-degree angle and decreased to 45-degree halfway through the week (n=4). The home cage was removed from the rack and placed next to the training cage on the workbench. After 15 seconds, a small pinch of yogurt drops was placed in the training cage along with the enrichment tube. The time it took for the rats to move to the training cage was recorded. The latency to change cages was highest on the first days, averaging 40s for the rats using a 45-degree cage, and 25s for the rats using the 90-degree cage. The latency to change cages decreased over the 7-day trial with the lowest latency occurring on day 7 for both groups at 1-8s for 45-degree cages and 2-23s for 45-degree cages. We found that, when this method was implemented, rats successfully learned to move cages by the end of the week. This training method can easily be implemented and is a positive alternative to handling rats for cage changes.

P149 Use of Colony Metrics to Reduce Excess Animal Production in a Dynamic Biotechnology Environment

R Kyauk1, S Masoud1, K Gilland1, C Chan2

1In Vivo Sciences, Denali Therapeutics Inc., South San Francisco, CA; 2The Jackson Laboratory, Bar Harbor, ME

Preclinical studies in animals are essential to help discover and develop candidate therapies for human diseases. Most animal needs can be predicted based on the progression of candidate molecules through the drug discovery pipeline, but unpredicted needs for animals often emerge as new obstacles are being discovered along the development path. With such uncertainty, the default strategy is often to produce animals in excess to prevent major delays in advancing molecules. Here, we aim to improve animal usage by developing a colony metrics reporting tool to optimize colony size. First, we ranked colonies based on level of animal waste to usage. Then we identified factors impacting animal waste such as animal age at discard, age at shipment representing usage, and number of breeding trios. We found the ratio of discard age to ship age and the quantity of breeding trios directly impact excess mouse production. Adjusting discard age to align with average age at...
shipment to project needs informs colony owners of whether or not the current number of breeding trios needs adjustment. To measure improvement, we calculated the estimated animal production numbers and housing costs before and after changes were made. Decreasing the number of breeding trios led to 25% reduction in animal production. This, combined with a lowered discard age when applicable, resulted in 15%-20% cost savings. Providing data that supported reasons for implementing changes gave colony owners agency and confidence to make informed decisions that reduced excess mouse production. Of colonies included in our assessment, 75% incorporated at least 1 change that reduced animal production or housing costs. Use of this colony metrics tool allows for improved colony management, ethical use of animals and cost savings.

Clinical

P200 Feeding Patterns of Infant and Juvenile Rhesus Macaques (Macaca Mulatta) Living in Large Outdoor Captive Breeding Groups

K Bagley*, J Ramsey, K Ethun

Emory National Primate Research Center, Atlanta, GA

Prior feeding studies of socially housed young rhesus macaques have commonly involved food intake quantification methods with limited accuracy of individual consumption. Few data are also available regarding environmental and biological factors that may influence solid food consumption during infancy through the juvenile period. Here, we present longitudinal calorie intake data of free-feeding, rhesus monkeys (n=26 males, n=29 females) from 1-24mo of age that lived with their mothers in large social groups. Feeding data were generated from a commercially available, automated feeding system that reliably records grams of food pellets obtained in real-time by detecting microchips implanted in each hand of individual animals. The most rapid increase in daily caloric intake occurred during infancy through 16mo of age, then remained largely unchanged through 24mo of age. Beginning at 4mo of age (peak lactation), males and females born to high-ranking dams consumed significantly more kcals per day than animals born to lower-ranking dams (p’s<0.01). By 14mo of age, high-ranking females consume significantly more daily kcals than low- and middle-ranking females (p<0.05). Beginning at 4mo of age through 24mo, high-ranking males consumed significantly more kcals per day than low- and middle-ranking males (p’s<0.05), with a distinct peak in kcal intake at 16mo of age. Regression analyses reveal that other factors, including maternal food intake at peak lactation and birth timing (early vs. late in season), account for additional variance in daily calorie consumption of all offspring at 16mo of age (p<0.001). Together, these findings demonstrate that feeding patterns of growing rhesus monkeys are dependent on sex, social rank, and other maternal factors. This is the first study to characterize the feeding patterns of young rhesus macaques across multiple stages of development and to establish expected monthly kcal intake ranges for infant and juvenile rhesus macaques raised in large multi-matrilineal breeding groups, based on sex and familial social rank. Feeding data derived from this study will be used to enhance the clinical health monitoring and management of captive-bred rhesus macaques on an individual basis, representing a paradigm shift from conventional practices.

P201 Jaundice And Hepatic Necrosis in Axolots (Ambystoma Mexicanum)

B Varian*, Y Lee, EB Jordan, N Parry, S Erdman, A Garcia

Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, MA

Three of 20 white leucistic axolots (Ambystoma mexicanum), aged 1.5 to 2.5 years, individually housed on a recirculating water system, presented with anorexia and jaundice. Gross examination revealed severe, multifocal to coalescing hepatitis, with necrosis and suspected infarction in the liver. Histopathological evaluation found hepatocellular degeneration and necrosis, variations in hepatocyte size, distinct nuclear changes (karyomegaly, binucleation, and mitotic figures), and the presence of small aggregates of basophilic intracytoplasmic material resembling inclusion bodies. To rule out infectious causes, PCR on liver was negative for ranavirus. A liver culture identified Aeromonas hydrophilia and Aeromonas caviae, which are opportunistic pathogens associated with aquatic environments. However, this was likely an environmental contaminant as pathology did not identify a bacterial infection. No other overt signs of infectious etiology were observed in these cases or control cases. The housing system further reduces infectious spread as water flows from the filter system into the individual tank, back into the filter system before reaching other tanks. Water quality was suspected to be the cause of the pathology as water assessments revealed a decline in conductivity and increase in nitrates, indicating poor water quality with potential organic enrichment. These values indicate a disturbance in the water conditions, which likely provided a favorable environment for potential opportunistic pathogens to proliferate. Prompt intervention and corrective measures were implemented to address the water abnormalities, including improved filtration, adjusted feeding schedules, and water changes. The successful management of the disease outbreak was attributed to the focus on restoring optimal water quality conditions. These cases highlight the crucial role of water quality in preventing disease outbreaks in axolots. The association between compromised water conditions, opportunistic pathogen presence, and the observed liver pathology underscores the need for maintaining optimal water quality parameters for the overall health and well-being of axolotl populations.
P202 Canine Distemper Outbreak in Commercial Ferret Population in 2022

CA Johnson-Delaney1,2

1Colony Health Support, NW Zoological Supply, Edmonds, WA; 2Health Programs, Washington Ferret Rescue & Shelter, Everett, WA

Ferrets supplied to both the pet trade and lab supply largely come from one source although they are in separate facilities in September 2022, severe illness and mortality began appearing in pet stores and distributors in Canada and the US. One major store chain sent dead ferrets for necropsies, histopathology and virology to one veterinary laboratory where CDV (canine distemper virus) was identified through PCR and IHC. The breeder began testing its colony. The same vaccine had been used, although the location of manufacture may have changed (Distemink; United Vaccines, Inc, Fitchburg, WI, USA). Because no cases were being seen at the facility, the vaccine continued to be used until it was confirmed through genetic sequencing as the likely source of the epidemic. Kits would be vaccinated at approximately 7 weeks of age, and then shipped. Clinical signs and mortality would begin within 3-14 days after shipment. Cases continued through mid-November when the breeder ceased distribution of ferrets to the pet trade. Clinical cases began appearing in the holding facility in the unshipped kits. The CDV from the ferrets was genetically sequenced, and showed 100% identify with the Lederle strain, an established America-1 lineage vaccine strain. Vaccine-induced CD has happened before, and is well documented. The division of the company breeding ferrets for research has not disclosed cases. The author had a discussion with the breeder, and provided the successful treatment regimen for them to use and provide to pet stores, veterinarians, and owners. The breeder did vaccine testing and titers, along with correlating the age of the ferrets and the immune response. Results showed that ferrets must be vaccinated at a later age than previously done, and ferrets will now be shipped at 12-13 weeks of age, 2 CDV vaccinations and rabies. While the ferrets should receive a third CDV vaccine, this is being left to the pet stores and new owners. Limited shipments of ferrets began in April, and the breeder reported successfully treating approximately 80% of the ferrets with clinical CDV. Recovered animals will be suitable for pets as well as non-infectious disease research.

P203 A Novel Method of Health Monitoring in Laboratory Zebrafish

AK Darbyshire1,3, V Johnson2, A Horvath4, A Leon4

1Comparative Pathobiology, Purdue University, West Lafayette, IN; 2College of Veterinary Medicine, Purdue University, West Lafayette, IN; 3Laboratory Animal Program, Purdue University, West Lafayette, IN; 4VRL Animal Health Diagnostics, Gaithersburg, MD

Zebrafish (Danio rerio) are useful in scientific research due to their close genetic similarity to the human genome and fast reproductive lifecycle. Their increased use in scientific research calls for improved methods of monitoring their health, as current methods involve multiple types of testing including submission of whole fish to identify various pathogens. This study aims to create a novel sampling technique by exposing nitrocellulose filters to sump water over the course of twelve weeks. The filter was compared against other known testing methods of swabbing biofilm from the sump, passing sump water through a vacuum filter, and whole fish PCR. It was hypothesized that the nitrocellulose filter would identify more pathogens over time, reducing the need for multiple testing methods. Weekly PCR testing was conducted to detect Mycobacterium chelonae, Mycobacterium fortuitum, zebrafish picornavirus, Myxidium streisingeri, and Pseudoloma neurophilia. P. neurophilia was not detected by any of the three environmental sampling techniques. Swabs of the sump biofilm detected the fewest number of pathogens. There was no significant difference between nitrocellulose test filters and water testing methods. Nitrocellulose test filters consistently identified Mycobacterium spp and Z. picornavirus, and performed similarly to water filtration with less labor in sample collection. Therefore, the nitrocellulose test filters may be a less labor-intensive method for quarterly health monitoring of laboratory zebrafish colonies over time and may eliminate the need for alternative pathogen detection methods.

P204 Evaluation of Live Insect Feed as a Potential Pathogen Source in an SPF Rodent Facility

S Johnson*, R Erickson

Center for Comparative Medicine, Northwestern University, Evanston, IL

Our vivarium maintains a small colony of grasshopper mice (Onychomys torridus), which are provided live insect feed for nutritional and environmental enrichment. Due to the proximity to our SPF rodent colonies, we sought to evaluate the potential for feeder insects to act as fomites for introduction of rodent pathogens. Live Dubia roaches (Blaptica dubia), crickets (Acheta domesticus and Gryllodes sigillatus), mealworms (Tenebrio molitor), and superworms (Zophobas morio) were obtained from six different vendors and fed to the mice as part of their daily enrichment. Additionally, the colony was evaluated for vivarium-excluded pathogens as part of our rodent quarantine and health surveillance programs. IVC racks were monitored using exhaust air dust (EAD) filters during the 3-month period when the sampled insects were fed to the grasshopper mice. Whole insects, swabs collected from insect shipping containers, and EAD filters were submitted to a commercial diagnostic laboratory for PCR detection of viral, bacterial, fungal, and parasitic agents. Samples from multiple insect species and vendors were PCR-positive for Klebsiella spp, Pseudomonas aeruginosa, Streptococcus pneumoniae, and Proteus mirabilis. Mealworms from one vendor were PCR-positive for mouse parvovirus, which was further speciated as MPV1. Dubia roaches from multiple vendors were PCR-positive for the genus Campylobacter; further PCR speciation was negative for C. coli and C. jejuni. Dubia roaches from multiple vendors were PCR-positive for pinworms; further
PCR speciation was negative for *Aspiculuris tetraptera*, *Syphacia muris*, and *Syphacia obvelata*. EAD filters tested PCR-negative for the same agents. Further study is needed to determine whether these results represent infectious pathogens or remnant genetic material. Regardless of infectious risk for rodent colonies, the use of live insect feed has the potential to produce positive pathogen results for facilities using environmental PCR testing as part of their rodent health surveillance programs.

P205 Comparison of Butorphanol-Azaperone-Medetomidine with Tiletamine-Zolazepam-Xylazine For Sedation of Pigs (Sus Scrofa Domesticus)

A Bernardini¹, WR Williams²

¹Oklahoma Comparative Medicine Training Program, Oklahoma City, OK; ²Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK

Reliable sedation of pigs for short, non-painful procedures is difficult due to challenges in restraint, injection routes, prolonged recovery times, and insufficient sedation depth. A group of domestic cross pigs required hoof trims under sedation, necessitating a drug combination that could reliably sedate large pigs for 30 minutes to 1 hour without extended recovery times. Pigs weighed 154 to 280 kilograms. Four pigs were sedated with a compounded solution of butorphanol (0.58 mg/kg), azaperone (0.2 mg/kg), and medetomidine (0.23 mg/kg) intramuscular. Two pigs were sedated with a combination of tiletamine-zolazepam (2 mg/kg each) and xylazine (1 mg/kg) intramuscular. Pigs were continuously observed after injection to determine the time to onset of sedation. Heart rate, respiration rate, rectal temperature, and pulse oximetry (spO2) were monitored every 5 minutes. Pigs sedated with butorphanol-azaperone-medetomidine were reversed with 2.5 mg naltrexone and 1.1 mg/kg atipamezole intramuscular. Pigs not attempting to stand 10-15 minutes later received an additional 0.55 mg/kg atipamezole. Pigs sedated with tiletamine-zolazepam-xylazine were reversed with 0.1 mg/kg atipamezole intramuscular and if not attempting to stand after 20 minutes received an additional 0.05 mg/kg. Pigs injected with tiletamine-zolazepam-xylazine vocalized and attempted to flee upon initial injection, whereas pigs receiving butorphanol-azaperone-medetomidine had minimal reaction. Time to onset of sedation and vital parameters during sedation were similar between groups. Pigs sedated with butorphanol-azaperone-medetomidine stood after a mean of 22 minutes, compared to 45 minutes for tiletamine-zolazepam-xylazine. For a 200 kg pig, butorphanol-azaperone-medetomidine requires a 16 ml injection and costs $101.76, while tiletamine-zolazepam-xylazine requires 10 ml and costs $346.68. In conclusion, both drug combinations are viable options to achieve sedation for short, non-painful procedures in pigs. Butorphanol-azaperone-medetomidine presents a fully reversible, cost-effective sedation option for large pigs with decreased aversive behavior at time of injection and with shorter recovery time compared to tiletamine-zolazepam-xylazine.

P206 Clinical Management of Complications Secondary to Experimental Administration of Doxorubicin in Swine

S Beecy¹, A Slate¹, I Gertsenshtein², F Bijari³, M Dhaynaut³, S Moon³, M Macdonald-Soccorso², H Deng², A Macdonagh², A van Kampen¹, G Goudot¹, R Woodcock¹, M Yaghoubian⁴, N Alpert², M Normandin², G El Fakhri²

¹Center for Comparative Medicine, Massachusetts General Hospital, Charlestown, MA; ²Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA; ³Cardiac Surgery, Massachusetts General Hospital, Boston, MA; ⁴Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA

Doxorubicin is an anthracycline antineoplastic antibiotic used in the treatment of multiple cancer types. Although effective at slowing cancer growth, doxorubicin can cause severe toxicities, such as dose-related cardiotoxicity leading to congestive heart failure. Administration of multiple doses of doxorubicin to swine over several months serves as a model of doxorubicin-induced cardiotoxicity. At our institution, early markers of cardiotoxicity are studied in swine by measuring mitochondrial membrane potential with PET/CT imaging following multiple doxorubicin administrations. This serves as a diagnostic measure for early detection of cardiotoxicity before irreversible damage. Swine are a sensible choice for investigating cardiotoxicity in the laboratory. Yet, animals are also susceptible to myelosuppression, inappetence, weight loss, skin and nail abnormalities, allergic reactions, and extravasation associated with doxorubicin. Through collaboration between the veterinary and investigative teams, a monitoring scheme and strategies for clinical intervention were developed to maintain the health of this swine model, while still achieving study aims. Doxorubicin was administered every 3-4 weeks at 1.95-2.3mg/kg via vascular access port into the jugular vein. Nadir and recovery of blood cells post-administration were monitored through weekly complete blood counts until values stabilized. When leukopenic, animals were monitored for malaise and lethargy, and antibiotics were administered in cases of superficial abrasions. When thrombocytopenic, swine were monitored for petechia, ecchymoses, melena, and fecal occult blood. Suspected gastric ulcers were treated with gastroprotectants. Through close observation, early clinical intervention, and delaying doxorubicin administration until hematologic stabilization, it is possible to achieve study goals in a model with expected hematologic toxicities related to chemotherapeutic administration and their sequelae. Successful management of these animals will support improvements in the safety of doxorubicin use in humans and, by sharing these experiences and strategies, provide other veterinary and investigative teams with the knowledge and tools to maintain animal health during experimental chemotherapeutic administration.
P207 Management of Fur Mites (Radfordia lemnina) in California Deer Mice (Peromyscus californicus)

VM Capria,1,2 C Freed1

1Ohio State University, Columbus, OH; 2Department of Comparative Medicine, East Carolina University, Greenville, NC

A closed colony of 2-month to 1-year-old adult male and female Peromyscus californicus were imported from an academic research facility and tested positive on a general mite PCR but negative on all species-specific mite PCR assays. Tape tests were performed on 61% (n=54) of the cages, 21% of which were positive for adult mites or viable eggs. Mites were sent for sequencing and identified as Radfordia lemnina, for which the natural host is Microtus pennsylvanicus. The entire colony was treated with 0.1ml selamectin (5 mg/ml; diluted in 70% ethanol) applied topically to the nape and repeated one month later. A subset of mice, originally identified as positive on tape tests, were targeted for follow-up testing. Tape tests were performed weekly for 15 weeks. Once two consecutive weeks of tape tests were negative, a fur swab PCR was performed, and tape test frequency was reduced to every other week. Offspring generated from the colony were also tested at 12 and 21 weeks via tape tests and PCR. All mice were successfully treated and no gross adverse reactions to selamectin treatment were noted. Following treatment, eggs were identified with decreasing incidence on tape tests and had greatly altered morphology, indicating ovicidal activity of selamectin for this mite. No adult mites were identified after treatment. At 13 weeks post treatment, two negative rounds of tape tests were obtained, although the mite PCR was positive. Scant egg casings (1/week) were intermittently observed at 13 weeks, indicating continued presence of genetic material but not necessarily an active infection. Weaned offspring were negative at both timepoints, providing further support for successful treatment. At 22 weeks, the quarantine was lifted. Adult mice will continue to be tracked until PCR negative.

P208 Presumptive Methyl Methacrylate Toxicity in a Cohort of Northern Tree Shrews (Tupaia belangeri) with Cranial Implants

S Achilles,2 J Foote2, R Grytz2, DE Collins1

1Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI; 2Animal Resources Program, University of Alabama at Birmingham, Birmingham, AL; 3Dept. of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL

Over the course of several months, four tree shrews (3 female and 1 male ranging in age from approximately 2 years to 8 weeks of age) were either euthanized or found dead in the acute post-operative period following a standard cranial pedestal implant surgery using methyl-methacrylate (MMA) routinely performed by the laboratory. For the surgery, animals were sedated with ketamine (100 mg/kg IM) and xylazine (7.5 mg/kg IM), provided pre-operative analgesia (Buprenorphine, 0.02 mg/kg SQ), and maintained on mask isoflurane. Per the laboratory, anesthesia, surgery and recovery for all animals was uneventful. Gross lesions or mortalities were noted 24 hours to 7 days post-operatively and were characterized by erythema and necrosis in the anogenital region. Histologically, animals presented with pneumonitis, and hemorrhagic to necrotizing cystitis. Veterinary staff observed the procedures and evaluated surgical technique, drug dosages, heat support elements, and anesthetic monitoring. All practices were found to be in line with standard recommendations. However, overt fumes were appreciated at that time of observation due to the re-constitution of the MMA occurring on the benchtop in close proximity to the animal under anesthesia and also the recovery area for animals that had already undergone the procedure. Upon investigation, other laboratories on campus were performing this similar procedure in the fume hood. The only pathogenesis that explains the clinical picture (recent cranial implant surgery) and the trio of pathologic lesions (pneumonitis, hematuria/cystitis, and skin irritation/necrosis) is methyl methacrylate toxicity. MMA is rapidly metabolized and is primarily eliminated by the lungs as carbon dioxide through the tricarboxylic acid cycle or as methacrylic acid in the urine. Either directly or via its metabolite (methacrylic acid), MMA functions as a direct irritant to mucosa and skin. While widely regarded as a safe polymer for use in laboratory animals, there is evidence of species-specific variability in sensitivity. Caution should be utilized when using MMA in a novel species, and appropriate occupational health and safety precautions should be taken at all times.

P209 The Chinchilla Consortium: A Chinchilla Clinical Case Report Gold Mine

AK Darbyshire,1 RA Malbrue2, CB Arsuaga-Zorrrilla3, A Osborne3, DL Dobek10, J Xu12, M Dunbar11, DL Fong3, LM Habenicht4, MK Fink4, ER Feldman5, GA Jackson5, L Birdwell14, EL Mitchell9, M Ortega3, WR Williams5, C Cain13, A Moffitt13, M Williams-Fritsiz6, C Manuel4

1Comparative Pathobiology, Purdue University, West Lafayette, IN; 2Nationwide Children's Hospital, Columbus, OH; 3University of Alabama at Birmingham, Birmingham, AL; 4University of Colorado AMC, Denver, CO; 5Cornell University, Ithaca, NY; 6Wake Forest University, Winston-Salem, NC; 7University of Oklahoma HSC, Oklahoma City, OK; 8Massachusetts Eye and Ear Institute, Boston, MA; 9CBSET, Inc., Boston, MA; 10Tulane University, New Orleans, LA; 11UT Southwestern Medical Center, Dallas, TX; 12University of Illinois, Urbana-Champaign, Champaign County, IL; 13Children's Hospital of Philadelphia, Philadelphia, PA; 14University of Oklahoma, Norman, Norman, OK

Chinchillas serve a unique niche in biomedical research as an important laboratory animal model for otologic research. Unlike most of the domesticated species used in biomedical research, many of the resources specific to chinchilla husbandry, care, and medical management lie within the unorganized public domain. A relatively low number of chinchillas are used in research in the U.S. annually which...
Fenbendazole is a benzimidazole anthelmintic commonly used in biomedical research settings for pinworm elimination in mice, but little data has been reported about its use in the prairie vole. A colony of prairie voles (Microtus ochrogaster) tested positive for Syphacia obvelata during quarterly sentinel testing of female Crl:CD1(ICR) mice housed on dirty bedding. As a pair-bonded mammal, prairie voles offer a unique model for investigating effects of social hormones. Because maintenance of pair bonds was central to the study team’s goals, it was determined that no breeding moratorium would be imposed during the treatment period. Eradication consisted of a pulse dosing regimen of high-fiber pelleted rabbit chow medicated with fenbendazole (150ppm), along with environmental decontamination and increased biosecurity measures. Treatment efficacy was monitored with weekly in-house tape testing. Confirmatory PCR was performed when all in-house microscopy was negative, which occurred after 9 weeks of pulse dosing. PCR testing was performed twice to ensure the room’s negative status, and the outbreak was cleared by the end of a 12-week period. The study team reported no apparent effects on breeding efficiency, litter sizes, or pup weights as compared to baseline values obtained from the same breeding pairs prior to treatment. These data support the efficacy of an approximately 3-month pulse dosing regimen of fenbendazole-medicated feed in the treatment of Syphacia sp. in prairie voles while maintaining breeding pairs to preserve experimental aims.

P211 Waterhouse-Friderichsen Syndrome and Acute Death in a Post-Operative Piglet (Sus scrofa domesticus)

C Morrill*, JG Vilches-Moure

Department of Comparative Medicine, Stanford University, Belmont, CA

A singly housed, 7-week-old male Yorkshire/Landrace hybrid piglet (Sus scrofa domesticus) was noticed to be shaking and warm to the touch. It died minutes later. Three days prior, the piglet underwent a routine cardiopulmonary bypass procedure and was kept overnight on a ventilator. The following morning, the incision was re-opened to control intrathoracic bleeding. The piglet was recovered and profuse diarrhea was noted along with bruising/weakness in the pelvic limbs. A fecal sample was collected for flotation and culture; analysis revealed few Cystoisospora organisms and normal fecal flora. Gross necropsy findings included: intrathoracic adhesions, discolored/condensed cranioventral lung lobes, mottled/pale liver, abundant blood-tinged intrathoracic fluid, approximately 50 mL of yellow peritoneal fluid (cultured positive for Pseudomonas aeruginosa and Enterococcus faecalis), widespread subcutaneous edema, and enlarged and discolored inguinal/lumbar/thoracic lymph nodes. Histopathology revealed multifocal necrosis and hemorrhage in the liver and adrenal cortices. Multifocal necrosis and mineralization were present in the myocardium and skeletal muscles of the left pelvic limb. Altogether, these findings suggest that death in this piglet was most likely due to a combination of cardiac necrosis and multi-organ dysfunction. The presumed multi-organ dysfunction in light of adrenal cortical hemorrhage is suggestive of Waterhouse-Friderichsen syndrome. This syndrome describes symptoms associated with adrenal insufficiency secondary to adrenal hemorrhage. Multiple etiologies including septicemia are described in human medical literature. While there was no evidence of bacteremia in the examined sections, septicemia would still fit this case presentation. Differentials include procedure-related drugs/methods (notably, heparin), bleeding diathesis, transfusion reactions and fluid overload. This case serves as a reminder to monitor the adrenal glands in patients with sepsis or profound hemorrhage to prevent rapid clinical deterioration.

P212 Sclera-embedded Search Coils: Removal Complication and Successful Treatment

EQ Zhang*, R Tierce, K Wharton

Institute of Comparative Medicine, Columbia University, New York, NY

The precise monitoring of eye position is an important measure of non-human primate (NHP) gaze and attention for certain primate neuroscience studies. Prior to the development of noninvasive eye-tracking procedures, neuroscientists tracked
eye movements using sclera-embedded search coils. These are fine wire coils that are surgically implanted below the surface of the sclera, circumferentially around each eye. Over time, these coils may become damaged, and must be replaced or removed. With the advent of noninvasive eye-tracking techniques, the use of eye coils has declined significantly. Despite the decline in use, there are many NHPs that still have implanted eye coils that require removal. The current case describes a surgical complication that may result from removing an eye coil, and the subsequent successful management. An 18-year-old male rhesus macaque (Macaca mulatta) presented with implanted sclera-search coil wires eroding through the surface of the sclera and skin, at the level of the frontal bone. Surgical removal of bilateral eye coils was performed through a trans-conjunctiva approach. One week post-operatively, a ventral strabismus and adduction elevation deficit developed in the left eye. Through consultation with a human pediatric ophthalmologist, the NHP was diagnosed with acquired Brown’s syndrome. Acquired Brown’s syndrome (ABS) is described in people and is caused by abnormalities involving the superior oblique tendon-trochlea complex. First-line treatment involves injection of a steroid into the intra-trochlea complex. To our knowledge, this is the first documented case and treatment outcome of ABS in an NHP.

Two separate injections (triamcinolone, 10mg) performed three weeks apart yielded full resolution of the clinical signs. Resolution was confirmed through non-invasive eye tracking, documenting ability to correctly track visual stimuli. This case presents a potential complication to the removal of sclera-embedded search coils, and a successful non-invasive treatment option for affected rhesus macaques.

P213 Ferret Kit Revival Following Natural Parturition and Hysterectomy

HI Saleh1, RA Ober, AJ McLuckie
Northwestern University, Chicago, IL

Seven time-pregnant jills arrived at a large academic institution to establish a ferret (Mustela putorius furo) breeding colony. Three jills exhibited complications, with one case involving maternal rejection and two cases involving dystocia. The jills were approximately 1-year-old, primiparous, and intact. In all three cases, kits required human intervention for revival through manual stimulation and heat support. In the case of maternal rejection, an individual kit was found cyanotic and apneic outside the nest box. Color and respiration improved with manual stimulation and patient warming over 30 minutes. Once revived, the kit was accepted by the jill. One acute (<24 hours) and one chronic (>24 hours) dystocia occurred among the other two jills. The acute case of dystocia failed to respond to medical induction regimens. The chronic case exhibited premature labor over a weekend, and due to length and severity of dystocia, required supportive care prior to surgical intervention. Both cases resulted in hysterecromies; the acute dystocia had no obvious abnormalities and clear fetal movement, while the chronic dystocia exhibited a malodorus, congested, cool-to-the-touch uterine body with no obvious fetal movement. After Caesarean section, kits had their oral and nasal passages cleared, and received manual stimulation for 5-10 minutes, prior to being placed in an incubator. The jill in acute dystocia was recovered from anesthesia and the kits were successfully reintroduced under close supervision. No health issues or instances of cannibalism were observed. The jill in chronic dystocia was euthanized after hysterectomy due to her poor prognosis. The kits retrieved from this case were used in acute studies as per the IACUC-approved protocol. In all cases, kits that received human intervention were revived with a 100% success rate. In conclusion, intervention efforts should be attempted for ferret kits despite what may appear to be a poor prognostic outlook.

P214 Novel Restraint Method for Topical Treatment of California Deer Mice (Peromyscus californicus)

VM Capria1,2, C Freed1

1Ohio State University, Columbus, OH; 2Department of Comparative Medicine, East Carolina University, Greenville, NC

At our institution, a colony of 109 adult male and female Peromyscus californicus required topical treatment for fur mites. This required application to the skin at the nape and access can be difficult given deer mice have a thick fur coat. Although scruffing is an effective and safe restraint method for deer mice, it was not suitable for topical treatment as it would obscure the treatment area. In addition, deer mice can be difficult to handle due to their quickness and jumping ability. Animal care staff may utilize plastic tubs as secondary containment to minimize the opportunity for escape when changing cages. Therefore, we created a novel method of restraint using a modified rat plastic sleeve. Shortening the length of the sleeve and creating a window for treatment proximal to the breathing hole enabled us to access the target treatment location. Utilizing the base of the tail, deer mice were easily moved into the plastic sleeve and the body gently squeezed into the distal end to minimize movement. This technique was quickly learned by all operators with minimal practice. Using a micropipette, the modified sleeve allowed a single user to successfully and accurately apply a topical treatment to deer mice of varying sizes with minimal animal struggling and vocalization. Multiple sleeves were created so that one mouse could remain in the sleeve and be released only after its cage mate was safely contained in a separate sleeve. This ensured each individual mouse was treated when socially housed. Additional benefits included easy sanitation and low cost to manufacture which enabled us to create replacements after multiple uses. The modified plastic sleeve could be easily adjusted for use in other small rodent species for clinical topical treatments or extrapolated to provide restraint for additional procedures.
P215 Polyglucosan Body-Associated Cardiomyopathy in New Zealand White Rabbits: A Case Series

LH Streb1, EA Ihms1, R Gruenwald1, CV Lohr1, JL Sargent1, TP Polley1, AG Armién1, P Sriboonyapirat1

1Biomedical Sciences, Oregon State University, Chatsworth, CA; 2UC Davis, California Animal Health & Food Safety Laboratory, Davis, CA

Twenty-one New Zealand White rabbits (Oryctolagus cuniculus) were acquired from the same vendor for use under anesthesia in terminal or survival procedures (n=12 females), tissue collection (n=7 females), or routine surveillance (n=2 males). Intake physical exams were within normal limits, except for two rabbits presenting with hind limb paresis and severe muscle atrophy. The anesthetized cohort ranged from 5 months – 4 years of age. These rabbits presented as challenging anesthetics with variable hypercapnia, dyspnea, and required prolonged postoperative support. The non-anesthetized cohort included the 9 rabbits used for tissue collection and surveillance, which were between 3 months – 3.5 years of age. All rabbits were submitted for postmortem evaluation. On necropsy, 18 (86%) out of 21 rabbits had mild to moderate global cardiac enlargement, 16 (89%) of which were accompanied by serosanguinous pericardial effusion. The same rabbits had moderate to severe pulmonary edema grossly and histologically. Myocardial degeneration and fibrosis, ranging from mild to severe, was noted upon histologic examination. Mild skeletal myofiber degeneration was also noted in 11 (52%) animals. Contained within the cardiomyocytes (17/21, 81%), and rarely the skeletal muscle (3/21, 14%), are scattered basophilic, intracytoplasmic inclusions, which stain Periodic acid-Schiff positive and are resistant to diastase. Samples from the most severely affected rabbits were submitted for electron microscopy (EM). The results of EM confirmed polyglucosan accumulation within the cytoplasm. In this report we describe a novel cardiomyopathy of rabbits with intracytoplasmic inclusions. To the authors’ knowledge, this has never been documented in rabbits previously in the primary literature. A total of 44 rabbits were received from this vendor, 21 of which were evaluated postmortem. Though not all animals were necropsied, this suggests a prevalence of at least 48% within the population (21/44). The age range of affected animals, and prevalence within the number of animals ordered, suggests an early onset, genetic, progressively degenerative disease. Further investigation is required to determine the nature and origin of these inclusions.

P216 Multimodal Anesthetic and Analgesic Regimen for Laparotomy in Pregnant Ferrets

MM Granko*, AJ McLuckie, RA Ober

CCM, Northwestern University, Crestwood, IL

A novel study at our institution, involving intra-uterine electroporation (IUE) of embryonic neural tissue, required laparotomy for experimental purposes; and one laparotomy with hysterectomy was performed on a naïve, full-term jill in dystocia. Premedication consisted of fentanyl (0.005 mg/kg) and dexmedetomidine (0.03 mg/kg) administered subcutaneously in combination. Alfaxalone (5 mg/kg) was administered intramuscularly for induction, with isoflurane and oxygen via mask for maintenance. Analgesia was provided via local anesthetic line blocks (bupivacaine 1%), and subcutaneous extended-release buprenorphine (0.2 mg/kg) and meloxicam (0.2 mg/kg). Supportive measures including subcutaneous fluids and patient warming devices were used. Electrocardiogram (ECG), pulse oximetry (SPO2), respiratory rate (RR), heart rate (HR), body temperature, and reflexes were monitored during surgery. Additionally, blood glucose was monitored during the recovery period. Total anesthetic and recovery time averaged 55 and 36 minutes, respectively, HR, RR, SpO2 and ECG readings remained within reference ranges during surgery and recovery periods. Body temperatures were all within normal limits by recovery. All laparotomies were performed without complication and were followed by short, uneventful recoveries. The jills had good appetites and displayed normal behavior post-operatively, including maternal care and nursing in the hysterectomy case. Seven kits were retrieved via hysterectomy and a total of thirty-seven kits were born after IUE. Twenty-nine kits were used in acute experiments and eight kits were raised beyond weaning with no obvious anatomic or physiologic abnormalities noted. Results suggest that this multimodal approach can be used successfully for anesthesia and analgesia in pregnant ferrets undergoing laparotomy.

P217 Novel Pancreatic Neoplasm in a Female Zebrafish

AR Guy1, I Sidor2, SE Woods1,2

1Veterinary Postdoctoral Training Program in Laboratory Animal Medicine, New York University-Regeneron, New York, NY; 2VelociGene, Regeneron Pharmaceuticals, New York, NY; 3New Hampshire Veterinary Diagnostic Laboratory, Dept. of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH

An 8-month-old female un-injected control AB wildtype zebrafish (Danio rerio) presented with a severely distended abdomen. The fish had difficulty navigating the vertical water column, remaining near the bottom of the tank, but was otherwise clinically unremarkable as were tankmates. On gross examination, following euthanasia by rapid chilling and formalin fixation, the coelom was markedly enlarged and fluid-filled, 15x30mm in greatest extent. The differential diagnoses included egg-associated inflammation and fibroplasia, neoplasia, and infection. Histopathology identified a partially encapsulated, well-demarcated, multilobular and
centrally cystic mass arising from pancreas. The mass was adhered to the viscera and body wall, but was not infiltrative. Lobules were formed by polygonal cells irregularly arranged in dense sheets and occasionally distinct small acini, separated by a fine, lacy fibrovascular stroma. Cells exhibited moderate anisokaryosis and anisocytosis, and had abundant eosinophilic cytoplasmic granules (zymogen), moderately sized oval nuclei, fine chromatin, small nucleoli, and rare mitoses. Masson’s Trichrome and periodic acid Schiff stains highlighted stromal and capsular collagen, cytoplasmic granules, and low numbers of rodlet cells in capsule and mesentery. Mammalian immunohistochemical cytokeratin stains did not perform as expected in normal and neoplastic zebrafish tissues. This pancreatic neoplasm was diagnosed as a likely exocrine adenoma, given only mild atypia and a lack of invasion, falling between hyperplasia and carcinoma. It is considered incidental to the health of the remaining fish cohort. While pancreatic ductal tumors and hyperplasia are common in zebrafish, only a few cases of exocrine pancreatic neoplasia have been reported and only in other teleosts. This case presents a rare neoplasm not previously described in zebrafish.

P218 Prolonged Analgesic Regimen for Intramuscular Injection Associated Myositis in C57BL/6JN Mice

DS Tu1, T Brabb2, JJ Klug2

1Comparative Medicine, Seattle Children’s Research Institute/University of Washington, Seattle, WA; 2Comparative Medicine, University of Washington, Seattle, WA

On experimental day 0, ten four-month-old male C57BL/6JN mice were anesthetized with isoflurane for bilateral intramuscular (IM) injections in the gastrocnemius. 50uL of mitochondrial isolates (MITO) were given in the right limb and 50uL of vehicle (300 mM sucrose, 10 mM K-HEPES, and 1 mM K-EGTA) in the left limb. Subcutaneous ketoprofen (5mg/kg) was administered. Recovery was uneventful and mice were ambulatory. Day 1, all mice presented with severely swollen right gastrocnemius and resistance to extension of the right limb. The left gastrocnemius was moderately swollen. Five mice in a single cage were lethargic and were euthanized. The second cage of five mice were otherwise active. Day 2, one mouse was dead. Four mice were lethargic to moribund and were euthanized. The differential diagnosis included sepsis, irritation of injectables, or iatrogenic trauma from injection technique. One mouse was necropsied; bacterial culture of the right gastrocnemius grew *Achromobacter xylosidoxides*/*denitrificans* and *Micrococcus luteus*. The skeletal muscle of the right pelvic limb had locally extensive, moderate, necrospurpurative myositis with intraesional bacteria confirmed by gram stain of the tissue. The left pelvic limb muscle had no detectable bacteria and milder inflammatory infiltration. Bacterial contamination during MITO preparation was the likely cause of decline. A follow up pilot with significant MITO preparation modifications was performed to determine if vehicle administration caused additional irritation beyond expected IM injection inflammation. One group received IM injections with vehicle in the gastrocnemius and MITO in the contralateral limb. A second group received IM injections with saline and vehicle. The mice received ketoprofen daily and were euthanized after 3 days. All mice presented with mild bilateral swelling of the gastrocnemius but were active. One mouse from each group was necropsied. Bacterial blood cultures resulted in no growth. MITO and vehicle injection sites presented with mild histiocytic myositis and more inflammation compared to saline injected tissue. These findings indicated vehicle administration was associated with increased irritation and updates were made for mice under this study to receive NSAID treatment for three days.

P219 Tail Necrosis Following Jugular Cannulation in Rats Associated with Inadequate Thermal Support

J Kincer1, N Caudill1, B Newcomb1, K Zamiar1, T Anderson2, P Ortinski2

1DLAR, University of Kentucky, Lexington, KY; 2Neuroscience, University of Kentucky, Lexington, KY

Five out of eight Sprague Dawley rats (*Rattus norvegicus*) presented with tail necrosis within 24-48 hours following a surgery consisting of an intracranial injection and jugular vein catheterization. Approximately one-half to two-thirds of the distal portion of the tail was grey/black in color and felt cool to the touch. Two of the rats had self-amputated the necrotic portion prior to discovery and were monitored for healing. Three rats had tail amputations performed proximal to the necrotic area by Veterinary Services. Post-operatively, these rats received meloxicam (2mg/kg, subcutaneous or oral, every 24 hours) for 2 days post-surgery as per the research protocol. To prevent infection rats were provided with 5g, bacon-flavored tablets containing 2mg enrofloxacin for 5 days. One rat also exhibited dark discoloration of two toes on the left hind paw which were monitored until study endpoint, 3 weeks after surgery. Gross examination of the amputated portions of the tails revealed darkened tissues consistent with necrosis. The lateral tail veins were dissected and blood inside was visibly thickened and coagulated. It was determined that while heat support was provided under the body, it was not provided to the tail itself. In addition, the surgeon had been recently trained and was relatively new to the jugular cannulation procedure, which extended the surgery time. Per the surgeon, jugular catheterizations took anywhere from 40 minutes to 85 minutes. Longer surgery times were also associated with the incidence of necrosis. For the next four animals in the study, a new thermal support set-up was employed, and the surgeon was careful to ensure that tails were on the heating pad. These rats had an uneventful recovery and no signs of tail necrosis. Blood vessel constriction and increased blood viscosity have both been associated with hypothermia. Provision of adequate thermal support, including the tail which is a key regulator of body temperature in rats, was found to be critical to prevent this complication and should be considered essential, especially for surgeries of longer duration.
P220 Infiltrative Lipoma in a Zebra Finch (Taeniopygia guttata)

K Salleng*, SI Gografe

Comparative Medicine, Florida Atlantic University, Delray Beach, FL

An aged adult male zebra finch presented with moderate ataxia, bilateral conscious proprioceptive deficits and decreased motor function in the legs. The researcher was concerned that the bird was being bullied and removed it from the common aviary to a cage by itself for monitoring. Other differential diagnoses included: neoplasia, kidney enlargement, other trauma, spinal issues (including disc prolapse and degenerative joint disease) and neurological disease (high fat diet). However, given the fact there were feathers missing and the animal was on a balanced diet varying in composition of seeds, boiled eggs and fresh produce, bullying was suspected. After a few weeks of monitoring with no improvement, the bird was euthanized and presented for necropsy. The bird was in good body condition and mild postmortem atrophy. There was minimal urate staining around the cloaca. Tail feathers were small, immature and broken. Samples were fixed in 10% NBF for histology. Sagittal sections of the spinal cord at the sacral level revealed well differentiated adipocytes compressing and invading the spinal cord. No mitotic figures were noted in the adipocytes. An infiltrative lipoma was diagnosed as both local compression and infiltration were present. Infiltrative lipomas are uncommon neoplasms but have been reported in the spinal cord of various species. However, documented reports of an infiltrative lipoma of the spinal cord of zebra finches were not found in the literature. This is the first report in a zebra finch. Other histologic lesions included: Moderate, diffuse, hepatocellular hydropic and microvesicular change, invasion of proventricular isthmus koilin and glands with yeast organism whose morphology is consistent with Macrorhabdus ornithogaster. This case highlights the necessity of necropsy and histology for accurate diagnosis, even when fighting is suspected.

P221 Topical Fluralaner to Treat Chicken Body Lice (Menacanthus stramineus) in a Biomedical Research Setting

E Godollei-Jacob*, MM Walker¹, AB Wathen¹, B Noden¹, J Brandão²

¹Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK; ²Veterinary Clinical Sciences: Zoological Medicine, Oklahoma State University, Stillwater, OK; ³Animal Resources, Division of the Vice President for Research, Oklahoma State University, Stillwater, OK

Infestations of lice and other blood-feeding ectoparasites present clinical risks for poultry flocks, contributing to agricultural production loss and confounding variables in the laboratory setting. The antiparasitic drug fluralaner has been approved for oral administration in agricultural poultry in the European Union and Australia but is limited to companion animals in the United States. Twenty, 41-week-old Buff Orpington hens (Gallus gallus domesticus) housed indoors for use on an IACUC-approved biomedical study presented no clinical symptoms from a naturally occurring infestation of chicken body lice (Menacanthus stramineus). Initial management with diatomaceous earth dust baths was unsuccessful in parasitic control. Pruritus, indicated by minor pericoelal self-excoriation, and increased infestation prompted medical treatment. Under veterinary guidance in accordance with AMDUCA regulations, investigators opted for an extra-label fluralaner trial to assess efficacy against poultry lice. Topical 250 mg fluralaner solution (Bravecto for Cats) was diluted to 12.5 mg/mL in 100% acetone. Individuals were weighed and administered a one-time, interscapular, topical dose at 1 mg/kg. On Day 1 (dosing), eggs and adult specimens were collected from each pen for taxonomic identification, vent regions were photographed, and clinical presentation was assessed. These steps were repeated at set intervals for 30 days while chickens remained on their primary study. A blinded observer evaluated randomized vent images to assess drug efficacy on parasitic presence. Images were categorized as: 1 (no visible lice), 2 (low to moderate number of lice), and 3 (large number of lice). By Day 5, statistical analysis of the non-normal distribution indicated significant difference in ectoparasite presence. By Day 8, all chickens were placed into Category 1. Fluralaner safely eliminated the infestation on all individuals without detrimental effects or observed recurrence. This treatment allowed for individualized application feasible for a small colony in a controlled research setting. Recurrence in outdoor or open systems should be considered and regularly scheduled preventative dosing should be investigated in the context of egg and meat withdrawal parameters.

P222 An Unusual Outcome Secondary to Indwelling Intrathecal Catheterization in a Rhesus Macaque (Macaca mulatta)

Y Gonzalez - Rodriguez*, A Duggan¹, K LaVallee¹, D Caudell¹, M Leblanc²

¹Animal Resources Program, Atrium Health Wake Forest Baptist, Winston - Salem, NC; ²Section on Comparative Medicine, Department of Pathology, Atrium Health Wake Forest Baptist, Winston - Salem, NC

An 18-year-old, male rhesus macaque presented for acute onset lethargy, inappetence and depressed mentation. The animal had an intrathecal (IT) catheter and port placed 6 years earlier under fluoroscopic guidance. The day prior to presentation, the animal received IT morphine without complications and was reported to be alert and responsive. Physical exam at presentation was unremarkable. Abdominal radiographs revealed feces in the intestines and spondylosis of the lumbar vertebrae. Gastrointestinal stasis secondary to opioid administration was suspected, the animal was treated with LRS fluids and Maropitant. Complete blood count (CBC) revealed neutrophilic leukocytosis (WBC 19 K/μL, neutrophils 18.04 K/μL) with toxic changes. The animal continued to be lethargic, so a culture of the IT port was obtained and a course of Enrofloxacin was
started due to suspicion of infection. The culture was positive for multidrug resistant Enterobacter sp. Through the week, the animal’s mentation improved but was persistently hyporexic. A cage side exam revealed bilateral paresis of the hindlimbs, and a sedated exam pain on palpation of the caudo-lumbar spine, most notable at the IT port. A CT scan showed several areas between L1-L5 where the IT catheter appeared to be traversing the parenchyma of the spinal cord, degenerative changes within the dorsal vertebral column and potential osteomyelitis or mineralized soft tissue in L7. A repeat CBC showed persistent neutrophilic leukocytosis (WBC 15.9 K/ul, neutrophils 11.9 K/ul). Given CT results, neurologic deficits and pain, euthanasia was elected. Gross necropsy and microdissection determined that meningeal fibrosis and reorganization of the spinal cord nerves caused the IT catheter to be drawn inward and entrapped by nerves and fibrotic tissue, making the catheter to appear centralized within the parenchyma. With histology it was established that with the passage of time, chronic inflammation, and fibrosis, along with reorganization surrounding nerve roots caused cord compression and subsequent axonal degeneration. These findings suggest that with the passage of time tissue remodeling due to inflammation could result in relocation of an IT catheter in animals with chronic indwelling catheters, thus these animals should be closely monitored.

P223 Enhanced Surgical Site Infection Prevention Protocols Improve Outcomes in Swine (Sus scrofa domestica)

C Brown*, K Patil, T Garcia, R Uthamanthil

Office of Animal Care, Seattle Children's Research Institute, Seattle, WA

Two, ~1.5-month-old, 6 kg, male Yucatan pigs housed in raised floor runs underwent survival surgical procedures to test a growth adaptive pediatric pulmonary valve device. Standard peri-operative procedures including administration of ceftriaxone and pre-operative incisional site antisepsis (scrub) with chlorhexidine gluconate (CHG) were used however, between 1 and 2 weeks post-op these animals developed surgical site infections (SSI). Wound culture revealed heavy growth of Trueperella pyogenes, an environmentally ubiquitous commensal bacteria of the skin and mucous membranes commonly found in the upper respiratory and urogenital tracts of this species thought to cause opportunistic infections. Incisional infections were refractory to systemic broad-spectrum antibiotics and wound management ultimately resulting in early termination of these pigs from study. Considering the organism cultured, we focused on two areas to prevent similar issues (1) peri-operative procedures and (2) post-operative wound management and implemented enhanced protocols with the next two study animals. This multipronged enhanced protocol included (1) presurgical bathing of animals with CHG wipes and packing of hooves with CHG soaked gauze during surgery, (2) use of tulathromycin as the peri-operative antibiotic based on diagnostic lab recommendations, (3) use of improved bandaging and jackets to better protect surgical wounds and indwelling catheters from post-operative contamination and lastly (4) additional CHG bathing at the time of sedation for catheter removal ~3-5 days after surgery. This enhanced, SSI prevention protocol prevented any gross incisional infection in both animals who went on to survive to their intended endpoint. Given the successful outcomes we plan to apply this enhanced SSI prevention protocol moving forward in all swine undergoing higher risk procedures to improve survivability to study endpoint and overall animal health which is a species adaption of procedures used in human cardiothoracic surgery.

P224 Diagnosis & Treatment of Dermatophytosis in a Gottingen Minipig

A D’Amario*, A Merley

CARE, Brown University, Oakland, RI

A ~1 year old, intact female Gottingen Minipig (Sus scrofa domesticus) presented with mild skin irritation in the left periocular region. On physical examination, the skin around the left eye was erythmic and swollen with evidence of pruritus. The pig recently had surgery and was on meloxicam as part of the approved protocol, but systemic diphenhydramine and topical triple antibiotic ophthalmic ointment were initiated due to signs of inflammation. Despite treatment, the pig’s clinical signs progressed and a thick brown discharge began to build up around the affected area along with pustules and the lesions spread to the other side of the face. Due to the lack of improvement, the pig was sedated for examination. The hair on both sides of the face was shaved and the area thoroughly cleaned with chlorhexidine, revealing multifocal to coalescing areas of raised, erythemic skin. Two punch biopsies of the affected areas were taken and sent to a diagnostic laboratory for histopathology. Pathology identified pustular dermatitis along with GMS-positive fungal hyphae and arthrospores in the superficial crusts consistent with dermatophytosis. Although dermatophytosis is considered self-limiting in swine, there is a zoonotic concern for personnel and other animals so treatment was elected. Oral fluconazole was initiated along with injectable ceftiofur crystalline-free acid for dermatophytosis and secondary bacterial infections, respectively. The affected areas were cleaned with chlorhexidine/ketoconazole wipes and topical terbinafine cream as needed. Over the course of 2-3 weeks, the skin began to have less buildup of debris and pruritus had resolved. Treatment lasted for ~6 weeks after which the pig was euthanized at its experimental endpoint. At necropsy, punch biopsies of the previously affected skin were taken to evaluate treatment efficacy. No fungal organisms or other infectious agents were noted. Although uncommon in the laboratory setting, this case highlights the importance of dermatophytosis as a differential diagnosis for erythemic skin lesions with brown crusts in swine.
P225 Zinc Concentrations in Laboratory Society Finches (Lonchura striata domestic) and Enrichment Items

LC Achille1, P Jowett2, E Sasaki2,3, N Falconnier2,3, F Del Piero2,3, C Gergye1

1Division of Animal Resources, School of Medicine, Emory University, Decatur, GA; 2Louisiana Animal Disease Diagnostic Laboratory, Baton Rouge, LA; 3Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA

An institution maintains a colony of society finches (Lonchura striata domestic). A bird presented for evaluation of a head tilt. Physical examination revealed a head tilt and horizontal nystagmus. Rule outs included traumatic injury, infection of the middle/inner ear, and intracranial neoplasia. Treatment consisted of 1.0 mg/kg oral Meloxicam SID for three days and 50 mg/kg oral TMS SID for five days. No improvement of clinical signs was observed. A colony history of feather loss and galvanized caging made zinc toxicosis a differential diagnosis. In days following, eleven healthy finches, and the clinically affected bird, were humanely euthanized. Samples were collected for toxicologic and histopathologic screening. Sources of zinc included grit, caging, or toys. Sample items were sent for toxicologic screening. In the clinically affected bird, histopathologic findings included yolk coelomitis, mild rhinitis, and intramedullary hemorrhage of the calvarium. No meningeal or cerebral changes corresponded with this hemorrhage. Histopathologic examination of the pancreas showed no evidence of zinc toxicosis. Toxicology revealed elevated plasma and kidney zinc concentrations (normal plasma range: 0.8-2.5 ppm). The final diagnosis is inconclusive as histopathologic findings could not be associated with clinical signs. Of the eleven healthy birds, seven had elevated plasma zinc levels. Three birds (two with zinc plasma concentrations >2.5 ppm, and one with a concentration of 1.7 ppm), had pancreases sampled for histopathology. No overt evidence of zinc toxicosis was observed. Samples of the grit and bell had zinc levels within an acceptable range (based off parrot feed). The metal clasp on the toy had high levels of zinc at 18.2%. Heavy metal toxicities are more commonly seen in larger birds due to destruction of toys and caging elements, but are less often observed in smaller birds. The samples from the colony gave a unique opportunity to estimate zinc exposure levels and highlights the varying zinc concentrations found in bird toys. Removal of toys with metal clasps and bells was implemented. Due to the varying zinc concentrations present in bird toys, zinc toxicosis as a differential diagnosis should not be overlooked in cases of neurologic birds with feather loss.

P226 Ophionyssus natricis Infestation in a Laboratory Hatchling Corn Snake (Pantherophis guttatus)

LC Achille*, W Hanson

Division of Animal Resources, School of Medicine, Emory University, Decatur, GA

A hatchling corn snake (Pantherophis guttatus) obtained from a commercial vendor was housed in a biomedical institution. This snake was evaluated for lethargy. On physical examination, the patient had mildly decreased skin turgor. Preceding this clinical presentation, the snake’s health had been unremarkable for the three months since arrival. Upon entry into the institution, the snake underwent a 2-week quarantine period where it received prophylactic antiparasitic treatment consisting of 50 mg/kg oral metronidazole (days 1 and 14 of quarantine) and a 5 mg/L ivermectin bath (days 1, 7, and 14 of quarantine). A warm water bath was provided to aid in rehydration which resulted in a substantial number of minute parasites emerging from the scales. A sample of the parasites was examined microscopically. Examination revealed the parasites to be mites. Upon returning to the patient for continued treatment, the snake was found deceased. Necropsy findings revealed an overall pallor of the tissues. Histopathologic findings included skin lesions associated with chronic acariasis, serous atrophy of fat of the heart, and diffuse, chronic hepatocellular atrophy of the liver, indicating a negative energy balance despite the presence of partially digested food in the GI tract. Colleagues at the local zoo aided in speciation of the mite as Ophionyssus natricis. All reptiles in the colony were examined and prophylactically treated with topical antiparasitic spray (fipronil). All enclosures and the housing room were sanitized. It is suspected that the mites gained entry into the vivarium through the bedding material. Therefore, institutional practices were revised so that bedding is autoclaved before use, enclosure components are run through cagewash, and prophylactic antiparasitic treatment of the growing snakes was increased from semi-annually to quarterly. This case provides an example of the severe debilitation that can result from infestations of Ophionyssus natricis, particularly in a growing animal. It also highlights challenges associated with managing this unique species in a research setting. Although infestations of Ophionyssus natricis are seldomly seen in research institutions, it should not be overlooked as a differential diagnosis in lethargic snakes.

P227 Malignant Sertoli Cell Tumor with Pulmonary Metastasis Originating from Cryptorchidism in Common Marmoset

M Yasuda*, M Mochizuki, Y Kamai, K Kawai

Pathology Center, Central Institute for Experimental Animals, Kawasaki, Japan

A 4-year-old, intact male common marmoset (Callithrix jacchus) cried strangely when held during a routine physical examination and subsequently presented labored respiration. Thoracic radiographs revealed soft tissue opacity throughout the thoracic cavity and multiple large nodular masses diffused in the lungs. It was humanely euthanized because of severe dyspnea. Gross necropsy findings included a hemorrhagic pleural effusion, white nodular masses of varying sizes throughout the lungs, and mediastinal lymph node swelling. Moreover, unilateral abdominal cryptorchidism with white sclerosis atrophy was observed on the right side of the bladder.
Histologically, the hidden testis revealed loss of the structure of the convoluted seminiferous tubules and irregular lobules separated by a well-developed fibrovascular stroma. The irregular lobules consisted of cuboidal to columnar neoplastic cells which formed palisade- or sheet-like structures. Neoplastic cells had round nuclei with one to several distinct nucleoli and relatively abundant acidophilic cytoplasm. Necrosis with mineral deposition was frequently observed in the center of sheet-like growth areas. Immunohistochemistry of the lungs and hidden testis showed that the neoplastic cells were positive for the Sertoli cell markers, vimentin and WT-1, and negative for Leydig cell marker, calretinin and seminiferous epithelium markers, c-KIT and Oct-3/4. Ultrastructurally, the neoplastic cells showed nuclear atypia with typical, deep nuclear envelope indentations. Based on these features, we diagnosed that dyspnea in this common marmoset was caused by the pulmonary metastasis of a malignant Sertoli cell tumor originating from the right hidden testis. Sertoli cell tumors rarely occur in humans and nonhuman primates, although common in dogs. To our knowledge, this is the first report of a malignant Sertoli cell tumor with metastasis in a nonhuman primate, the common marmoset.

P229 Cynomolgus Macaque (Macaca Fascicularis) Imported to the United States from Cambodia with Melioidosis

LL Ramos, PM Hidalgo

Vet Services, Inotiv LAMS West, Alice, TX

Melioidoisosis, potentially fatal infectious disease that can infect humans and animals, including NHPs, is caused by the high-consequence pathogen, *Burkholderia pseudomallei*. This environmental bacterium is found in soil/water of tropical regions, such as Southeast Asia, where it is endemic. A 2-year-old, 1.6 kg macaque imported into the U.S. from Cambodia for use in biomedical research presented with a 1x1 cm subdermal mass on dorsal aspect of the lumbosacral region during routine CDC processing. A week later, mass increased in size and visibility. Area around abscess/mass was clipped/ cleaned and aseptic prepped, a 2 cm incision made on mass and was flushed with saline. Abscess expelled mucopurulent contents. The incision was then sutured closed. Post surgery, table and all areas were disinfected with Wexicide 128. Samples were collected and sent to VRL lab in San Antonio for culture/sensitivity. Animal’s condition deteriorated quickly and presented with quiet behavior, was inappetent, lethargic and dehydrated with left head tilt. Treatments were started – Dexamethasone, Baytril, PPG & LRS IV. Two days post treatments, the animal stabilized. Bacterial isolate reported as *Burkholderia cepacian* sensitive to trimeth/sulfa. Treatment with TMS was initiated. Due to the potential for misidentification of *B pseudomallei* and because the NHP originated in a melioidosis-endemic region, CDC requested the bacteria isolate be submitted to Texas-DSHS Laboratory in Austin for confirmation. Upon confirmation of *B pseudomallei*, macaque was euthanized and a full necropsy performed. Gross pathology, multifocal smooth/round, cream-colored, liquid filled lesions on liver w/omentum adhesions. Spleen was solitary, off white-color plaque with an omental adhesion. Cream-colored, lesions were seen in right, middle and caudal lung lobes and spine was 8 mm in diameter lesion between 6/7th thoracic vertebra. Formalin-fixed samples submitted to the CDC for histopathologic analysis. This is the first documented case diagnosed during CDC-mandated post-

P228 Diet-Associated Dermatitis in a Swine Model of Nonalcoholic Steatohepatitis

JM Lawrence, P Felgendreff, JF Jacobs, MC Rahe, SNyberg, FD Duke Boynton

1Department of Surgery, Mayo Clinic, Rochester, MN; 2Department of Comparative Medicine, Mayo Clinic, Rochester, MN; 3Veterinary Diagnostic Laboratory, Iowa State University, Ames, IA

Nonalcoholic steatohepatitis (NASH), an aggressive subtype of nonalcoholic fatty liver disease, affects 5% of Americans. Effective treatment for NASH is limited and affected individuals are prone to developing cirrhosis and liver failure. As a novel model of NASH, the adverse effects of inducing disease in swine have yet to be fully characterized. Twelve, ten-week-old female Gottingen and domestic pigs were started on a high fat, L-amino acid defined, choline-deficient diet to induce diet-induced hypersensitivity dermatitis. Unique study diets can predispose animals to dermatitis secondary to hypersensitivity reactions, bathing and targeted antibiotic therapy is an appropriate treatment for suspected diet-induced hypersensitivity dermatitis.
importation quarantine-period. Euthanasia is recommended, instead of treatment due to concerns about zoonotic transmission, long treatment time, chance of recurrence and in non-endemic areas, or possibility of introducing the agent into the environment.

P230 Pharmacokinetic Study of Subcutaneous Buprenorphone Administration in the Jamaican Fruit Bat (Artibeus Jamaicensis)

B McKenna¹, H Weaver¹, H Knych¹, J Ayers¹, LV Kendall¹

¹Laboratory Animal Resources, Colorado State University, Fort Collins, CO; ²K.L. Maddy Equine Analytical Chemistry Laboratory, Davis, CA

The Jamaican fruit bat (Artibeus jamaicensis) is a valuable model for the study of infectious diseases due to their size and ability to harbor viruses without showing clinical signs of disease. Given their important role in research, they may frequently undergo procedures that require analgesia, which is poorly researched in these species. This study aimed to determine the pharmacokinetics of a single subcutaneous buprenorphone injection in the Jamaican fruit bat to guide future analgesia studies. Twenty-one bats were administered 0.5 mg/kg buprenorphone subcutaneously (Buprenorphone 0.3mg/mL). At 1, 2, 4, 8, 12, and 24 hours 0.3 mL of blood was collected non-terminally from their cephalic veins, stored at -80°C, and then analyzed routinely for buprenorphone plasma concentrations. Three of the twenty-one bats were collected at each timepoint and then returned to the colony. Three bats were euthanized for intracardiac sample collection to provide baseline values. The pharmacokinetic analysis via liquid chromatography and mass spectrometry showed that the maximum concentration occurred at 1 hour after injection, with a maximum concentration of 22.6 ng/mL +- 0.52. The area under the curve last was 94.9 h*ng/mL +- 8.80. It dropped below the purported therapeutic plasma concentration of 1.0 ng/mL at approximately 12 hours. This indicates that a 0.5 mg/kg subcutaneous injection of buprenorphone in the Jamaican fruit bat will provide analgesia for 8-12 hours. No mortality was detected in any bats, indicating that this was a safe dose.

P231 Comparison of the Fecal Microbiota of Spiny Mice (Acomys Spp) by Sex and Diabetic Status

N Compo*, A Cruz-Ramirez, S Comparini, RW Engelman

Comparative Medicine, University of South Florida, Tampa, FL

Spiny mice (Acomys spp.) are gaining in popularity as a research model, primarily due to their ability to regenerate tissue. To date, they have shown unique regenerative capabilities of muscle, skin, the spinal cord, cardiac myocytes, and kidney structure and function. The housing and care of these animals, however, requires special consideration. They require warm temperatures, special handling due to tail self-amputation when threatened, and readily develop type II diabetes mellitus (T2DM) when maintained on standard rodent chow. At our institution, approximately 30% of our spiny mouse colony have developed T2DM on ad libitum standard rodent chow. In refining our practices, we switched them to a diet consisting of 10:3:1 ratio of finch, insectivorous, and grass seeds, respectively, along with fresh produce and meal worms. Breeding pairs are supplemented with a small amount of high protein rodent chow. Prior to the change in diet, we collected fecal samples (n=54) and submitted for whole genome shotgun sequencing of the fecal bacterial microbiota. We compared sex, diabetic status, and both (MDM/FDM=males/females with T2DM, n=9 and 6, respectively; MN/FN=normal males/females, n=13, and 20, respectively), as determined by urine glucose results. The greatest strength of differences in alpha diversity (richness, evenness, and diversity) and in number of differences in species, were between MDM and FN, followed closely by MN vs FN, then MDM vs FDM. Of the 20 most relatively abundant (RA) species, two species of Muribaculum and Duncaniella, and one of Turicibacter were significantly lower in T2DM animals (p<0.05), a finding previously documented in other rodent T2DM models. Females had a higher RA of Helicobacter gannani and a single species of Prevotella and Muribaculum. Additionally, males had significantly lower richness, evenness, and diversity than females (p<0.005), while there were no differences in alpha diversity between T2DM and non-T2DM animals. Taken together, this suggests that sex may have a stronger influence on the fecal microbiome than diabetic status. Future plans include a comparison after the diet change, as well as examining whether T2DM can be reversed and have an associated change in microbiome with diet change in this species.

P232 Normal Serum Chemistry Reference Ranges for the Jamaican Fruit Bat (Artibeus jamaicensis)

J Pang¹, AR Moore², AJ Cummings¹, K Bukovec¹, J Scumaci¹, C Lovelace¹, B Singh¹, S Thomas¹, MB Pollak¹, J Ayers¹, LV Kendall¹

¹Laboratory Animal Resources, Colorado State University, Fort Collins, CO; ²Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO

The Jamaican fruit bat (Artibeus jamaicensis) is a natural host for many viral diseases and has been used as an experimental model to study Middle East respiratory syndrome virus, dengue virus, Zika virus, rabies virus, influenza virus, tacaribe virus and most recently SARS-CoV2. There is much interest in their unique immune systems which allow bats to harbor and transmit disease without significant clinical impact on themselves. Many studies evaluate changes in serum chemistry as a measure of disease impact, however there are no established reference values for the Jamaican fruit bat. In this study, we aimed to define baseline parameters from our closed bat colony. Seventy-three adult bats (23 males and 50 females) were randomly selected and euthanized by isoflurane overdose and blood collected by cardiocentesis. Serum samples were routinely processed using a Cobas e501 and commercially
available methods. Two samples were excluded as they could not be analyzed due to fibrin clots. Reference intervals for both sexes were established using the Reference Value Advisor 2.1 macro for excel and the nonparametric method, according to current guidelines. When compared against reference values for CD-1 adult mice, most notably bats had much lower cholesterol and total bilirubin, and much higher globulin, ALT, AST and GGT values. Differences between sexes were minimal. This information adds to our knowledge on normal physiological parameters of this species and will serve as a useful guide for future work performed on Jamaican fruit bats.

P233 Suspect Mucoid Enteropathy Outbreak in New Zealand White Rabbits

M Pollak*, K Bukovec, S Thomas, B Singh, J Pang, LV Kendall, J Ayers

LAR, CSU, Fort Collins, CO

An outbreak of suspect mucoid enteropathy occurred in 20 New Zealand White rabbits used in an orthopedic study. All rabbits affected were adult females, between 9 and 15 months. All rabbits were from the same vendor. All were on study prior to presentation with signs, and had not recently arrived. The initial 11 rabbits presented with anorexia, mucoid diarrhea, and/or dehydration. Eight rabbits were treated with oral trimethoprim sulfa for 1 week (30 mg/kg, q12h), subcutaneous Lactated Ringer Solution, oral metronidazole (35.7 mg/kg, q12h), transdermal mirtazapine (0.1 mg/kg) daily, oral vitamin B12 (300 mcg, q24h), and penicillin G procaine (PPG) intramuscularly (50,000 IU/kg) once. Four did not respond to treatment and were found dead or euthanized due to disease progression. Two rabbits presented acutely and were euthanized due to severity of clinical signs: hypothermia, severe dehydration, and dull mentation. One rabbit was found dead. The housing area was thoroughly decontaminated with disinfectant and cages sanitized. An additional 9 rabbits were affected approximately one month later. They were treated with PPG, subcutaneous maropitant (4 mg/kg) once, and either oral (300 mcg daily) or subcutaneous vitamin B12 (500 mcg, once). Eight out of these nine rabbits recovered, and one was found dead. All affected rabbits were also provided with supplemental fiber once daily, and ab libitum hay daily. Vital signs, food and water consumption, fecal output, and fecal quality were monitored daily. Necropsy was performed on 7 rabbits and intraluminal mucus was seen grossly. Histopathology revealed intestinal goblet cell hyperplasia. Several rabbits had additional histologic findings including multifocal necrotizing bronchopneumonia, typhlitis, and interstitial myocarditis with cardiomyocyte degeneration and necrosis. Three rabbits were diagnosed with mucoid enteropathy from necropsy reports, the remaining reports were suspected mucoid enteropathy. Intestinal cultures were performed and heavy growth of Clostridium perfringens was found in three rabbits. This case report provides insight about potential treatment options for mucoid enteropathy. Although prognosis is poor, aggressive treatment with the described treatments can facilitate recovery.

P234 Optimization of Intraarticular Administration in Rabbits Using Fluoroscopic Guidance

LD Bos*, N Mohr, E Taylor, L Wood, J Justen, A Petticoffer

Surgery and Efficacy, Charles River Laboratories Mattawan, Kalamazoo, MI

Inflammatory joint conditions are common diseases that affect millions of people. Some of the most common diseases are osteoarthritis, rheumatoid arthritis, and psoriatic arthritis. These diseases are characterized by joint pain, stiffness, and swelling due to damage of the joint. Intraarticular delivery is a route used to deliver potential new therapies for inflammatory joint conditions, which include synovial fluid replacement, stem cells, and viral vectors. When training to dose rabbits via this route, we aimed to reduce the probability of misdosing and find a maximum volume that can be dosed into the joint space without risk of leakage. To accomplish this, we dosed both male and female Dutch Belted rabbits with a weight range of 1.6 kg to 2.1 kg. The animals were anesthetized via Sevoflurane inhalation and placed in a position conducive to the individual’s preferred dosing hand. The dose site was shaved and scrubbed with chlorhexidine solution and the hind limb was bent to allow the indents on the sides of the knee to be located. The needle was then gently inserted at a 45-degree angle towards the femur, through the space at either side of the patellar ligament. The needle dropped into the joint with no resistance until the needle rested against the femur. This dosing angle reduces the probability of misdosing by eliminating the possibility of inserting the needle too far. We used contrast agent and fluoroscopic images to train individuals on this method. This allowed us to confirm proper administration and determine a maximum dose volume for consistently successful dosing. Using these tools, we found that up to 0.75 mls can be dosed with no visible leakage. No side effects, aside from mild stiffness for the first 48 hours following the dose, were noted upon recovery. There is anecdotal evidence that higher dose volumes are possible, but the probability of leakage increases.

P235 Clinicopathological Characterizations of Post-Surgical Vascular Access Button (VAB) Sequelae in Rats

E Sosnowski*, M Wilkinson, L Bedient

Labcorp Early Development, Somerset, NJ

The surgical implantation of intra-vascular catheters for chronic direct vascular access has produced an essential animal model in rodent preclinical research, with recent refinements leading to the design of subcutaneous vascular access buttons (VABs). Despite their wide availability and use, a published report describing the sequelae and interventional therapies for VAB placement complications is lacking in the current literature. This case series describes the clinical and histopathological post-surgical sequelae in Wistar rats derived from two commercial suppliers with dual vascularized (jugular and femoral vein) VABs. All VABs were commercially available marketed devices. Post-arrival, approximately 80% of
surgically implanted rats presented with varying degrees of peri-circumferential button surgical site dehiscence, seromas, and abscess formation under the button platforms. Treatment options and interventional strategies attempted included removal of hiding devices, individual housing, nail trimming, topical antibiotic ointment application, oral gel supplementation, systemic antibiotic therapy, systemic anti-inflammatory therapy and topical hydrogel wound sealant. Despite these varied treatments and interventional strategies, all affected animals required humane euthanasia due to the progression of lesions. Histopathology of the affected button surgical sites was performed for all euthanized animals, with lesions ranging from moderate to full-thickness ulcerative necrosis of the epidermis and dermis subjacent to the buttons, abscessation with mixed populations of bacteria, varying degrees of seroma formation and collagen necrosis within the felt pad used for anchoring. The reported use of surgical glue during the implantation procedure in two groups had no significant effect on the degree of ulceration and necrosis observed histologically.

P236 Intestinal Adenocarcinoma in a Rhesus Macaque: A Gut Feeling

D Branch*

Pathology, Emory primate center, Lithonia, GA

A 17-year-old, 9.7 kg Rhesus Macaque (Macaca Mulatta) housed in a general compound presented multiple times to the vet staff for weight loss and dehydration. The physical exam revealed a large palpable mass located within the abdominal cavity. Possible differentials for an abdominal mass include adenocarcinomas, endometriomas, lipomas or a large cyst. Due to a poor prognosis and a low quality of life the animal was then euthanized and submitted to necropsy for a postmortem examination. This examination confirmed the abdominal mass to be a multinodular mass associated with the ileocecal junction, the liver was patchy and enlarged with evidence of amyloid as well as the adrenal gland. One cut section of the ileocecal junction were infiltrated by multiple variably sized nodules composed of irregular neoplastic epithelial cells arranged in cords, and acinar forms surrounded by dense fibrous (scirrhous) tissue that affected both the mucosal and serosal layers. In some areas, the mucosal muscular layers were breached and disrupted by the neoplastic proliferation. The neoplastic foci were often surrounded by and associated with lymphocytic inflammatory cells. Sections of liver were characterized by ample, pale eosinophilic, homogenous material (amyloid) that diffusely separated hepatic cords and filled the hepatic sinusoids. Inflammation was minimal to absent. Both these disease processes intestinal neoplasia and hepatic amyloid are consistent with the animals reported clinical evaluations. In people Adenocarcinomas of the colon and rectum make up 95 percent of all colorectal cancer cases. These cases generally start as a growth of tissue called a polyp. In non-human primates, adenocarcinomas of the ileocecal junction is very common. In this particular case with the evidence of amyloidosis of the liver and adrenal gland would suggest chronic inflammation.

P237 Two Cases Of Rodentibacter-Associated Pyometra in the White-Footed Mouse (Peromyscus leucopus)

S Gillis-Smith*1, Y Lee1, AG Backx1, E Buckley Jordan1, T Huynh1,2, N Pate1, S Erdman1, A Garcia1

1Division of Comparative Medicine, Massachusetts Institute of Technology, Ashland, MA; 2Charles River Laboratories, Inc, Shrewsbury, MA

Within a one-month span, two experimentally naïve, intact, adult female white-footed mice (Peromyscus leucopus) originating within an established research colony were euthanized due to poor condition and marked abdominal distension. The first mouse was housed in a breeding group with another adult female and male; the second with a vasectomized male. Differential diagnoses included dystocia, ascites, organomegaly, pyometra, abscess, and neoplasia. Gross examination of the first mouse revealed two 1.5-2 cm yellow masses expanding the left uterine horn and body. The masses contained caseous material with no evidence of fetal tissues. A complete blood cell count and serum chemistry showed severe anemia, marked thrombocytosis, and moderate hyperglobulinemia suggestive of chronic inflammation. Histopathology showed cystic endometrial hyperplasia, supplicative endometritis, and extensive necrotic debris mixed with bacterial colonies. In the second mouse, gross examination identified bilateral distension of the uterine horns with approximately 3 ml of dark red, mucinous fluid. Histopathology showed cystic endometrial hyperplasia, endometritis, myometritis, and serositis with a mixed lymphoplasmacytic and granulocytic infiltrate, multifocal endometrial ulceration and intraluminal bacterial colonies. Cultures of uterine tissue and contents from both mice were positive for Rodentibacter pneumotropicus as well as Streptococcus thoraltensis and respiraculii in the second mouse. Pyometra was diagnosed in both cases. Pyometra has not been well described in P. leucopus and these cases suggest Rodentibacter pneumotropicus as a candidate etiologic agent in this species.

P238 Assessing the Etiology of Dystocia in the Mouse

MB Palillo1,2, AC Ritter1,2, C Cheleuitte-Nieves1,2

1Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, NY; 2Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, New York, NY

Dystocia is among the most common reproductive conditions in mice. It is classified as obstructive, from fetal factors such as an oversized fetus and abnormal fetal orientation, or functional, from dam factors such as uterine inertia, non-dilated birth canal, nutritional deficiencies and old age. Treatment is based on the dam’s condition and the category, but it most often results in euthanasia. A study was conducted to characterize its’
etiology to determine if treatment other than euthanasia is warranted. Mice considered to be dystocic, based on specific criteria, were evaluated. The signalment and experimental, clinical and breeding history was obtained and a targeted chemistry panel, radiographs, and a gross necropsy were conducted. A total of 54 mice were evaluated with 45/54 (83%) diagnosed with dystocia and 9/54 (17%) having other reproductive abnormalities such as neoplasia, metritis and uterine prolapse. Of the dystocia cases, 28/45 (62%) were on a B6 background and the average age at presentation was 181±85 days. Hunched posture, lethargy and vaginal discharge were the most common presenting signs. Mechanical dystocia was diagnosed if the pelvic canal width was less than the diameter of the closest fetal head or a fetus was stuck in the canal. Functional dystocia was determined based on clinicopathologic findings or systemic lesions. The number of mice categorized as having a mechanical (n=16) versus a functional (n=11) dystocia was not significantly different than those in which a definitive category could not be ascertained (n=18). Neither clinical signs nor clinical pathology were significantly different between mice categorized as having a mechanical versus functional dystocia. Azotemia (BUN: 69.3±8.1 mg/dL, mean±SE), hypoglycemia (100.7±8.1 mg/dL), and hyperglobulinemia (3.0±0.1 mg/dL) were common. A cage-side method for differentiating mechanical vs. functional dystocia could not be determined. However, based on clinicopathological findings, dams that appear stable without a mechanical dystocia, could benefit from subcutaneous fluids and dextrose. In cases where a neonate was trapped in the pelvic canal, lubrication and gentle traction can be considered. For dams in poor condition, e.g., moribund and/or hypothermic, euthanasia is recommended.

P239 Spinal Infiltrative Lipoma in a Zebra Finch (Taeniopygia guttata)

K Mokhtar Pouriani*, Y Lee, AG Backx, B Varian, E Franklin, N Gutierrez, N Pate, N Fabian

Department of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA

Spinal infiltrative lipomas are locally invasive, benign tumors composed of mature adipocytes that are rarely documented in avian species. In this case, we describe the clinical presentation and post-mortem findings of a spinal infiltrative lipoma in an adult zebra finch (Taeniopygia guttata) within an established research colony. A 23.6-gram 15-month-old male wild-type zebra finch presented for right leg lameness and generalized unthriftiness. Medical management (subcutaneous fluids, NSAID therapy, and supplemental high-protein commercial diet) resulted in initial clinical improvement. However, clinical signs progressed after a week, and unilateral (right-sided) wing trembling was additionally noted. At this time, euthanasia and complete necropsy were elected. Initial differentials included musculoskeletal injury, peripheral neuropathy, hypocalcemia, hypoglycemia, infectious etiology, and neoplasia. Terminal blood collection was performed. Packed cell volume and total protein were within reference ranges, and no viral inclusions or parasites were present on peripheral blood smears. Blood chemistry results were unremarkable except for mild hypertriglyceridemia. At necropsy, no significant findings were noted. Histopathology of the lumbar spinal cord revealed a focally infiltrative mass of mature adipocyte aggregates with invasion into the central canal with focal gray matter degeneration. To our knowledge, this is the first report of spinal infiltrative lipoma in a zebra finch. Lipomas, common in pet birds (primarily Psittaciformes), are thought to be associated with high-energy diets, obesity, and/or genetic predisposition, and are typically found in the integumentary system or intracoelomic cavity. Although uncommon, spinal infiltrative lipoma should be considered as a differential diagnosis for clinical presentations indicative of neurological and/or musculoskeletal disease in zebra finches.

P240 Chronic High-Dose Administration of Cyclosporine-toxicity in a Cohort of Royal College of Surgeons (RCS) Rats

R Alionhart*, J Kopanke, M Carlson, KE Saunders

Department of Comparative Medicine, Oregon Health & Science University, Portland, OR

A 7-moth-old, 170-g male RCS rat was submitted for necropsy after having developed tremors, ataxia, and hindlimb paresis. This individual was one of a 26-rat cohort that was injected subretinally with modified stem cells to prevent progressive retinal degeneration. He was receiving long-term administration of cyclosporine-impregnated water (210-mg/L) to reach a target blood concentration of 300-ng/mL, to prevent cell rejection. Gross necropsy findings included poor body condition (1.5/5), multifocal gastric ulceration, stomach dilatation, and pica of hair and bedding – no other significant lesions were identified on histopathology. Physical examination of other rats within the cohort revealed several with distended stomachs, six with malocclusion, and nearly all were thin with bedding present in the feces. One affected male was determined to have high blood concentrations of cyclosporine (2100- ng/mL), with urine dipstick samplings revealing glycosuria (500-1000-mg/dL). Consequent testing on the remaining 10 rats revealed hyperglycemia on glucometer (147-259 mg/dL) – males being more severely affected than females – and glycosuria on dipstick for several animals (100-500 mg/dL). Complete serum chemistry from one affected rat revealed hyperglycemia (203 mg/dL), elevated BUN (47 mg/dL), and hypoproteinemia (4.9-g/dL). Mild monocytosis (0.896 K/µl) and lymphopenia (4.096 K/µl) were also present. The clinical presentation of hyperglycemia, glycosuria, and poor body condition points to diabetes mellitus induced by chronic, high-dose cyclosporine exposure. Interestingly, signs of nephrotoxicity – one of the more common side effects of long-term cyclosporine toxicity administration – were not observed. Despite malocclusion and gastric ulcers not being documented as common sequelae to chronic cyclosporine toxicity administration in rats, an interaction between the strain, colony sub-strain, and the dose and duration of administration may be at play. While a lower concentration of
ingested cyclosporine will be implemented for future studies, useful screening tools for rats on long-term cyclosporine administration could include point-of-care blood glucose readings, serum chemistry readings, fecal-occult-blood testing, and inspection for evidence of pica.

P241 Estrogen Supplementation-Associated Mortality of Mice in Estrogen-Dependent Human Tumor Xenograft Model

Y Chen*, Y Chang, Y Su

National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan

Severe immunodeficient mice (NOD.Cg-PrkdcscidIl2rgtm1Wjl/J YckNarl, ASID) which lack functional T cells, B cells, and natural killer (NK) cells were subjected to subcutaneous estradiol pellet implementation (D0) following human MCF-7 breast cancer orthotopic implantation (D4). Seven of thirty mice were found dead without observation of initiating clinical signs or reaching humane endpoint from D22-D35. The mortality of the experimented mice showed dose-dependent manner with low-dose (0.36 mg /90-day release pellet, 2/15, 13 %) and high-dose estradiol (0.72 mg /90-day release pellet, 5/15, 33 %). Mild to moderate cystitis and ascending pyelitis with intraluminal colonies of gram-negative bacilli were found in two mice. In addition, numerous bacterial colonies in the glomerular and alveolar capillaries without apparent urinary tract lesions were noted in five mice. Two opportunistic bacteria were isolated from two moribund mice- *Escherichia coli* in the kidney and *Proteus mirabilis* in the blood. In this case report, our data show that higher dose estrogen supplementation leads to higher incidence of mortality and urinary tract problems or urosepsis in immunodeficient mice as previous researches. In previous reports, increased urethral resistance has been hypothesized as the mechanism for urine retention in mice implanted subcutaneously with sustained-release estrogen pellets. However, the previous research found that low dose of estradiol (0.5 or 0.3 mg) did not induce the death of mice and could support growth of the MCF-7 tumors in BALB/c nude or NOD SCID mice. In our case, even a low dose of 0.36 mg estradiol pellets induced 13% mortality with opportunistic bacterial infection. This is the first report to describe estrogen supplementation-associated mortality of the MCF-7 xenograft model in ASID mice, and these observations may be germane in establishing improved animal models for the evaluation of anti-estrogen-based cancer therapies.

P242 Struvite Urolithiasis in a Tg(KRT14-cre)1Amc/J Mouse

E Moore*, N Fowlkes, V Jensen

Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX

An adult naïve male Tg(KRT14-cre)1Amc/J mouse presented with a rough coat and hunched posture but was alert and responsive. This mouse was used as a breeder, but never successfully contributed to the birth of any litters. The mouse was placed on diet gel and moist pellets as part of routine veterinary treatment. Three weeks later, a mass in the caudal abdomen was noted. Upon palpation, the abdominal mass was hard and granular. Differential diagnoses included neoplasia or urolithiasis. In the course of 48 hours from the time the abdominal swelling was noted, the animal became lethargic, dehydrated, and lost body condition. Humane euthanasia was subsequently elected for the mouse. Gross necropsy revealed multiple round stones within the urinary bladder. Due to the acute decline of the mouse, a urinalysis and culture were not collected, however tissues and stones were. Sample analysis of the bladder stones confirmed struvite (triple phosphate) uroliths. Histopathology was performed on the formalin-fixed tissues, which revealed the presence of bacteria within the bladder lumen, hydroureter, and prostatitis. This is the first reported case of spontaneous urolithiasis in KRT14-cre mice. Spontaneous urolithiasis is uncommonly observed in mice, but should be included as a differential for abdominal masses in rodents. The occurrence of struvite urolithiasis in this Tg(KRT14-cre)1Amc/J mouse is likely coincidental, however other transgenic and knockout mouse could be utilized as animal models of urolithiasis.

P243 Unusual Tail Mass in a Dog

R Prentiss*1, J Stephens1,2, IA Galex1,2, R Sellers1,2, ST Shipley1,2

1Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC; 2Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC

A 7.5 year old, 20 kg spayed female, pair-housed hound mix canine (*Canis familiaris*) presented with a soft 2.5 cm by 2.0 cm mass on the proximal ventrum of the tail. No additional abnormalities were visualized in the skin and the physical examination was otherwise unremarkable. A complete blood count showed no significant findings. Dark brown serous fluid was obtained by fine needle aspirate (FNA) of the mass. Cytology of the fluid demonstrated mixed bacteria and debris. The top differential diagnosis was abscess, and other differentials included a nodule or cyst. The dog was treated with 200 mg cepodoxime PO for 10 days, without observable change in the mass’s appearance. A second FNA was performed that collected samples from the solid portions of the mass as well as dark brown serous fluid. The FNA of the solid material contained cellular debris, some squamous epithelial cells, and no discernable bacteria or signs of malignancy. Some bacterial rods were seen on a wet mount of the fluid. The dog was sedated and the mass was excised. The mass contained thick, brown pasty material. The dog was administered Meloxicam at 0.1 mg/kg subcutaneously for 3 days for analgesia. Gross and microscopic findings of the mass were consistent with a diagnosis of an infundibular cyst and mild mixed dermatitis with eosinophils. Infundibular cysts are benign lesions for which complete surgical excision is
considered curative. Cysts are lined by normal keratinized squamous epithelium and filled with keratin and cellular debris. The mild dermatitis may be secondary to irritation caused by the cyst, however the presence of eosinophils suggests a chronic hypersensitivity reaction.

P244 A GnRH Antagonist as a Treatment Option for the Management of Endometriosis in Laboratory Rhesus Macaques (*Macaca mulatta*)

JA Avelino, K Wharton, CA Walsh, D Ekanayake-Alper

Comparative Medicine, Yale School of Medicine, New Haven, CT; Institute of Comparative Medicine, Columbia University, New York, NY

Endometriosis is a chronic condition affecting females of reproductive age, characterized by the presence of endometrial tissue outside the uterus. Spontaneous cases of endometriosis also occur in macaques, exhibiting clinical abnormalities such as an abdominal mass and associated pain symptoms. While surgical removal of cysts and ovaries is often considered the most effective treatment, it may not always be feasible in cases of extensive abdominal infiltration/adhesions or when ovarian functionality needs to be preserved for long-term research objectives. As an alternative, hormone therapy aimed at blocking the effects of estradiol or its production, can be considered. Examples of such treatments include progestins, or GnRH agonists. The latter have been found to be the most effective long-term management option for endometriosis. However, their high cost poses challenges, especially in laboratory animal facilities. In this study, we explored the efficacy of Degarelix, a depot GnRH antagonist primarily used for treating prostate cancer, as a more affordable alternative to expensive GnRH agonists like Leuprolide. We tested Degarelix in two animals that were not suitable candidates for surgery and experienced recurrent endometriosis symptoms affecting their quality of life. Additionally, one female with diagnosed endometriosis and previous ovariectomy was included. All the animals received 40 mg of Degarelix every 40 days and were followed up for one year. We conducted pelvic ultrasounds and FSH, LH, estradiol, and CA-125 levels every three months. The animals treated with Degarelix exhibited a greater reduction in endometriosis-associated pain symptoms. Over time, the decreasing levels of FSH, LH, and estradiol contributed to the improvement of these symptoms. Based on the results, the depot GnRH antagonist Degarelix demonstrates promise as a treatment option for rhesus macaques experiencing endometriosis symptoms. Its affordability makes it an attractive alternative to expensive GnRH agonists, providing a potential solution for managing endometriosis in laboratory animal facilities.

P245 Pathologic Manifestation of *Streptococcus agalactiae* in Immunocompetent C57Bl/6 Training Mice

K Hoffman, KR Peagler, R Rice

1Animal Care Facility, NASA Johnson Space Center, Houston, TX; 2University of Washington, Seattle, WA

Two separate groups of healthy, immunocompetent C57Bl/6 female mice, 10 weeks old and 12 weeks old were ordered from two Charles River Laboratory locations for astronaut training purposes. Each group of mice entered the empty facility, as an all-in, all-out animal turnover approach. Each cage of mice received a bottle of water, standard irradiated rodent chow and paper bedding and were housed at standard animal density. All mice were examined daily during health checks and appeared to show no apparent signs of clinical illness. As crew training started, the first group of mice was used at 16-18 weeks and the second group of mice was used at 12-14 weeks, a slightly younger age. The method of euthanasia was ketamine/xylazine overdose, followed by cervical dislocation. On dissection for training purposes, abnormalities were immediately apparent within the abdominal cavity. The spleen was rounded and enlarged 4-5x the normal size. The livers in affected animals contained several lesions that were white, multifocal, with some large, some miliary. Differential diagnoses included: primary bacterial infection, primary viral infection, viral infection complicated by secondary bacterial infection, sepsis. Sterile cultures of the liver lesions were collected, urine was cultured, and splenic and hepatic tissues were collected for pending histopathologic evaluation. Culture results revealed an overwhelming presence of *Streptococcus agalactiae* in all samples and mild presence of *Staphylococcus aureus* in liver and urine samples. Source tracing was completed on items within the primary enclosures of the mice, which were all negative for *S. agalactiae*. Group B strep has not been reported to cause pathogenic lesions in non-diabetic C57Bl/6 mice as only DBA/2 mice are specifically noted to have a unique susceptibility to Lancefield group B streptococci. These findings may have serious negative implications for others using these mice for training and/or experimentation.

P246 Secure Intravenous Ear Catheterization Method for Pigs

A Kaiser-Vry, AP Kress, G Dell'Anna, MB Sauer

1Laboratory Animal Resources, Iowa State University, Ames, IA; 2University of Minnesota, Minneapolis, MN

Securing pig ear catheters often involves an extensive amount of material which adds weight to the ear while also obscuring visibility of the placement site. The goal was to develop a method that consistently and effectively secures catheters in pig ear veins, reduces the amount of material associated with traditional methods (such as wrapping the ear around a wad of gauze with tape), and increases visibility of the placement site. With the support of the vet staff, I applied methods of intravenous catheter placement learned while working as a...
patient care technician in a human hospital. Together, we refined and implemented a method for securing pig ear catheters that provides sufficient security and increased visualization of the catheter placement site as well as improved handler safety using a sedation protocol that often reduces the need for snaring. For our surgical procedures, sows are given 0.15 to 0.2 mg/kg acepromazine intramuscularly approximately 30-60 minutes prior to catheter placement. Topical lidocaine cream 2.5% is applied to the dorsal aspect of the ear and 0.1 to 0.25 mg/kg of morphine is administered intramuscularly approximately 15 to 20 minutes prior to catheter placement. The ear is cleaned with gauze soaked with 70% alcohol. Once dry, the SurePrep is applied liberally to the ear to allow better adhesion of the Tegaderm to the skin. The catheter is then placed intravenously and the t-port is attached to the catheter hub. Superglue is applied around the hub of the catheter where the t-port is attached to adhere the underside of the hub to the ear. The white plastic of the Tegaderm is peeled off and the Tegaderm placed over top of the entire catheter, leaving the end of the port exposed. The clear film on top of the Tegaderm is peeled off and pressed down firmly to ensure adhesion to the ear, and the t-port is flushed. This method has proven effective at securing pig ear catheters with increased visibility of the placement site. The inclusion of our sedation protocol has reduced the need to snare during catheter placement while also increasing handler safety. Furthermore, our team has maintained catheter patency for over three days using this method.

Husbandry and Management

P300 Baking Water: Watch Out Steam! Here Comes the Heat

C Patel*

Veterinary Medicine and Surgery, UT MD Anderson Cancer Center, Houston, TX

Water is an essential nutrient needed to sustain life. In laboratory animal research facilities, the quality of water can introduce experimental variables to research studies as well as compromise animal health. Mechanical water purification systems, such as reverse osmosis systems (RO), are most commonly used to treat animal drinking water. RO systems are capable of removing particulates, as well as biological and chemical contaminants from water sources. However, additional steps are often taken to ensure that the water is free from microbial contamination. Chemical additives (e.g. acidification, chlorination) can be used to maintain animal drinking water that is free from microorganisms. However, the addition of chemical additives may be contraindicated for certain types of research. As an alternative, many facilities use steam sterilization as their chosen method for sterilizing water bottles for the vivarium. Technological advancements in dry heat sterilizers, ease of installation, effective heat penetration of items and non-corrosive sterilization have renewed interest in this technology. Dry heat sterilization has historically been considered an ineffective method for sterilizing water and is considered a limitation of dry heat sterilizers. Contrary to this commonly held perception, we hypothesized that dry heat would effectively sterilize water. Bottles of distilled water were inoculated with rodent feces; a control sample was removed to verify microorganism growth. The bottles containing contaminated distilled water were then “sterilized” using a bulk forced-air dry heat sterilizer. Samples were tested weekly for microorganism growth. The results of this pilot study demonstrated dry heat can be used to sterilize water indicating that this method of sterilization merits further evaluation.

P301 Extinction of the Conventional Mop in the Laboratory Animal Facility. Evolution of a Macro-Environmentally Friendly, One-Pieced, Streamlined Bucketless Cleaning System.

AS Megginson*

Animal Resources, Midwestern University, Glendale, Arizona Campus, Glendale, AZ

The effectiveness of the sanitation equipment in a vivarium is fundamental to the cleanliness of the facility. Supplementary considerations must include budgetary limitations as well as human and environmental impacts. These cannot divert concentration away from animal welfare and research. At Midwestern University, Glendale, Arizona Animal Resources facility, the glut of plastic-reliant and rapidly deteriorating conventional mopping system was not fulfilling any of those requirements. Since the existing system was harshly straining the budget, a less pricey heavy-duty microfiber spray mopping system was contemplated. A budgetary analysis was conducted to verify the projected savings. Upon critique, it was purchased to be implemented and tested in select animal rooms. In addition, a calculation of water and disinfectant used in conventional buckets versus the spray system bottles was also completed. A further projected benefit was a reclamation of the square footage of the space required to store the conventional mop equipment and a reduction in the amount of water, detergents, and power used to clean the equipment itself. A therapy department specialist was consulted to verify the theorized ergonomic benefit of the spray mop system. Perhaps most significantly, a quality analysis using Replicated Organism Detection and Counting (RODAC) plating was performed on the floors, which were incubated and documented by the microbiology department to verify the efficacy of both types of equipment. Technicians can now carry just one 18 oz bottle plus mop-head, truly sanitize the floor, and return the unit to the wall behind the door within the room, relieving storage. Staff currently need only empty and wipe the unit to sanitize the floor, and return the unit to the wall behind the door within the room, relieving storage. Staff currently need only empty and wipe the unit to preserve integrity. The affordable heavy-duty spray mopping system provides a hygienic floor of 38 or fewer Colony Forming Units (CFU), all while being ergonomically superior, more environmentally friendly, and all-around easier to care for. There has yet to be any need for the replacement of any mops.
P302 Systems and Methods for Concurrent Germfree and Gnotobiotic Mouse Infrastructure

RW Engelman*

Comparative Medicine, University of South Florida, Tampa, FL

Traditional infrastructure for germfree and gnotobiotic mice (i.e., isolators enclosing static cages) is space inefficient, labor intensive and involves hazardous nebulized liquid sterilants (e.g., peracetic acid, chlorine dioxide). The infrastructure is also high risk with sterility breaks resulting in loss of the affected isolator’s entire murine inventory, necessitating weeks of monitoring a replacement isolator prior to its repopulation with germfree mice, and problematic from an experimental design and implementation perspective. We combined technologies previously unaware of one another, the IsoIVC-P and QUBE, and developed highly tractable and scalable methods for long-term germfree murine colony maintenance and concurrent germfree and gnotobiotic mouse model throughput in the same vivarium room. This is a highly space-efficient practice heretofore not attempted, making microbiome studies more accessible. We took each microbially similar IsoIVC-P to the QUBE for hydrogen peroxide vapor (HPV) exterior surface sterilization prior to opening it and mouse use. After >74 weeks of experimentation and handling >1,379,693 germfree mouse-days, we determined that this novel infrastructure has a performance metric of 0.0001 sterility breaks/husbandry unit/week, comparable to the isolator “gold standard.” This, while concurrently maintaining an Altered Schaedler Flora (ASF) colony and supporting multiple gnotobiotic studies involving fecal microbial transplants (FMT) to study end points without alteration in the same room, thereby improving microbiome research efficiency, eliminating hazards, and reducing risks posed by traditional infrastructure.

P303 New Enrichment for Squirrel Monkeys (Saimiri sciureus) and their Caretakers

MD Sheets*, G Childree, ER Barton, S Barton

LARC, university of California San Francisco, San Francisco, CA

In the wild, squirrel monkeys live in large troops with freedom to roam through wide spaces of territory to forage and carry out natural behaviors. However, in a lab setting, space to perform naturalistic behaviors can be limited and negative behaviors can become pronounced. We combat this by using different types of environmental enrichment. To prevent animals becoming uninterested or bored with the items, over time we regularly create new ones to help stimulate their behaviors. When the staff gives the squirrel monkeys fun, new enrichment, it creates a positive relationship between the animals and caretakers. The opportunity for animals to paint has proved to be one of these successful interactions. When painting, the paintbrush handles are placed through the animal caging with the tips of the brushes facing outward and attached using clips. Employees dip a small amount of non-toxic water-based paint on the tips of the brushes and hold up a canvas in front of the paint brush tips. The animals are then able to move the paintbrushes freely across the canvas. While the animals paint, it gives husbandry and veterinary staff a close view of the animals to assess them with minimal stress. With less stress, the well-being of the animals isn’t compromised, both animal and caretakers are happy, and the employees get an enjoyable painting made by the animals they compassionately care for.

P304 Overcoming Obstacles for the Care and Use of Gambian Pouched Rats (Cricetomys ansorgei) in Research

W MacCabe*, ER Feldman

Center for Animal Resources and Education, Cornell University, Ithaca, NY

The Gambian pouched rat (Cricetomys ansorgei) is a large murid species native to sub-Saharan Africa. These creatures have poor eyesight but a sensational sense of smell, and for many years have been trained to sniff out land mines and detect tuberculosis in humans. Wild caught pouch rats were brought to our institution in June 2015 for reproductive and olfactory investigations due to their importance in humanitarian work. Due to a lack of literature and the uniqueness of this laboratory animal species, handling and clinical care, housing, diet, and enrichment were challenging. Though the initial wild-caught cohort required anesthesia for handling and clinical care, implementation of a behavioral acclimation program resulted in our ability to perform many clinical and research procedures safely on awake animals, such as nail trimming, drug administration, physical examination, and phlebotomy. Modified housing was implemented to prevent escapes and reduce injuries. Nutritional changes in response to a presumptive diet induced metabolic disease resulted in resolution of clinical signs. Finally, larger caging designed with additional contents to allow environmental manipulation and species-typical behavior were developed for enrichment. This poster aims to address the challenges and our solutions associated with housing the Gambian pouched rat to create a safe environment for both the rats and human handlers.

P305 Achieving Successful Weight Mitigation in Over-Conditioned Research Ferrets

SR Gainer, A Osborne*

UAB, Birmingham, AL

Ferrets (Mustela putorius furo) are a valuable animal model for the study of human conditions and diseases because of their relatively small size and physiologic similarities to humans. A challenge in the research field is balancing species-specific behavior with research restrictions and regulations. Researchers at the University of Alabama at Birmingham utilize ferrets to study lung pathology. Standard housing is paired, same-sex ferrets in stainless steel modified rabbit caging (24x24x17) with grid flooring. Standard enrichment includes: plastic
hammock, Jingle Ball or equivalent toy, paper bag with paper towel, and once weekly supervised exercise. Ferrets receive Birmingham tap water and food ad libitum, filled twice daily. In October 2022 two intact, male, wild-type ferrets arrived from Marshall BioResources. These ferrets were noticeably larger in stature than others in the shipment but otherwise within normal limits. From arrival to January 2023, veterinary staff noted that the ferrets were steadily increasing in weight and body condition (BCS 5/5, weights 2.4 kg and 2.21 kg). To improve the health of the ferrets, and decrease the chance of study outliers, vet staff initiated a weight mitigation plan. The program included: feed 80 g of food in the morning and only feed in the evening if the food hopper was empty, increased exercise time to 15 minutes 2-3 times weekly, minimum once weekly weigh-ins, and monthly veterinary checks. From February to April 2023, ferret ID 561 lost 530 g (22% BW) and ferret ID 560 lost 330 g (15% BW). Staff observed increased mobility, species-specific behavior, and stamina during exercise time. UAB behavioral and vet staff plan to standardize exercise efforts for ferrets on campus. This program encourages a proactive approach to optimal veterinary and enrichment needs of research ferrets, and may serve as a template for other institutions utilizing ferrets.

P306 Maintaining a Green Anoles Colony and Creating a Green Anoles User Training Program: Challenges and Solutions

P Cheng*, SA McErlane, C Cheng
Animal Care Services, University of British Columbia, Vancouver, , Canada

Green anoles are an excellent animal model for human eye diseases because unlike mice, they have fovea similar to that of human eyes. Reference material for the care and use of green anoles is limited. In this presentation, we describe the development of a husbandry program for the care of green anoles at our institution and the creation of a training program for users of these unique animals. We describe development of handling and restraint methods that takes into account the natural behavior of these reptiles. We describe drug therapies, quarantine and husbandry protocols for the maintenance of the health of our green anole colony. We describe an optimized care protocol for maintenance of small crickets, which are the main food source of our green anole colony. Finally, we describe the synthesis of our knowledge in the creation of a training course with online modules and practical hands-on labs for users of these reptiles.

P307 Chicks Dig it, Improving Chicken Housing and Enrichment in a Laboratory Setting

TL Stevens*, A Tresler
Comparative Medicine, University Of Oklahoma Health Science Center, Oklahoma City, OK

Appropriate caging and housing systems are vital to the physical, physiological, and behavioral needs of laboratory animals. Inadequate housing that does not allow the expression of species-typical activities or provide appropriate space allotment can be detrimental to animal well-being and research outcomes. Chickens, *Gallus gallus domesticus*, are routinely housed at our institution, the University of Oklahoma Health Sciences Center (OUHSC). Historically at OUHSC white leghorn chicks are received at 1-2 days of age and housed in wire-bottom, heated brooder cages containing 20-25 chicks per brooder with limited enrichment options. We began experiencing an increase in pecking behavior with the chicks as early as 4-5 days of age, which would often continue even once the chicks were relocated into bigger brooder caging. After a chick received an injury involving open wounds and blood the other chicks would become attracted and obsessed with the injury site and would continue to peck at the affected chick, leading to removal from the flock for veterinary treatment, single housing, and at times even euthanasia. Evaluation by the OUHSC Behavioral Management and Enrichment Team (BMET) quickly elucidated that the housing arrangement was not allowing the chicks to elicit normal poultry behaviors such as scratching and foraging, as well as allowing the chicks to spread out and hide from more dominant chicks. The BMET developed a plan of floor housing for the chicks to help deter pecking incidences, as well as promote the natural behaviors of chickens. The larger floor space combined with the ability to forage, scratch, hide, and perch, as well as increased occupational enrichment and cage complexities have greatly improved our chicken’s well-being and comfort. The improved floor housing better promotes the ability to express natural behaviors, leading to a significant decrease in pecking injuries and euthanasia, in addition to improved research outcomes.

P308 An Identification Guide for Vole Species

S Bruggeman*, CG Mahan2, E Machtinger

1Animal Resource Program, Pennsylvania State University, University Park, PA; 2Division of Mathematics and Natural Sciences, Pennsylvania State University Altoona, Altoona, PA; 3Department of Entomology, Pennsylvania State University, University Park, PA

Proper identification of wild voles trapped for research down to the species level is critical to avoid noncompliance (e.g., change in species without prior IACUC approval) and for accuracy in scientific publications. However, many vole species have a similar external appearance, overlapping territories, and are commonly captured via the same trapping techniques. Four vole species are found in Pennsylvania: the southern red-backed vole (*Clethrionomys gapperi*), the meadow vole (*Microtus pennsylvanicus*), the woodland or pine vole (*Microtus pinetorum*), and the rock vole (*Microtus chrotorhinus*). Here, we describe their habitat distribution, physical and morphological characteristics and provide a photographic guide for species identification to ensure researchers are certain of the species being used and publications correctly identify the species of interest.
P309 Vivarium Modernization of a Nonhuman Primate Pre-Clinical Safety Facility

P Kowal\(^1\), J Davies, L Singer

Comparative Medicine, Pfizer, Groton, CT

The Pfizer Groton CT site recently undertook an 18 month project to convert a wing consisting of ten rooms of dog kennels to a contemporary vivarium designed to house nonhuman primates (NHPs). The renovation was a complete transformation of the existing footprint. The ten dog rooms were converted to nine large holding rooms including state-of-the-art novel caging with adjacent ante rooms, 3 procedure rooms, and a large ancillary equipment storage area. The renovation includes unique solutions for finishes, including fiberglass reenforced walls (FRP), NICO ceiling (interlocking FRP tiles with soundproof insulation incorporated). In addition, automated diamond textured doors, natural light sun tubes, stainless steel air filters, LED lighting, retractable power cords and ergonomic hoses were installed, along with hands free doors and sinks. Comparative Medicine (CM) further opened the space by incorporating smart glass. Using liquid crystal technology, this feature changes from transparent to opaque with the flip of a switch. This technology was used between the ante room and holding room allowing NHPs more visibility and provides personnel an unobtrusive means to perform clinical observations. Furthermore, another inventive design concept was developing a viewing room using smart glass that allows visitors to observe NHPs without having to satisfy medical clearances.

P310 Zip It! Mark Zebrafish Larvae, Juveniles and Adults with Fluorescent Elastomer.

S Frederickson\(^1,2\)

\(^1\)NHGRI, NIH, Bethesda, MD; \(^2\)Contemporaries, Silver Spring, MD

There are many experiments that require individuals or small groups to be distinguishable from others. Rodent models use traditional marking methods like tissue clipping or tattoos that are ineffective in zebrafish because of their regenerative properties. Visible Implant Elastomer is a flexible plastic that cures after injection and has been used to mark wild and aquacultured fish, including zebrafish juveniles and adults. We improved on this procedure to mark larval zebrafish as young as 2 dpf. This mark remains visible in an average of 72% of larvae at one month, when they can be injected with enough material to remain visible for the remainder of the fish’s lifetime. The improved procedure, Zebrafish Injectable Plastic for Identification Tagging (ZIP IT), could be a powerful tool enabling zebrafish larvae to be tracked and data to be gathered in ways previously not possible. This method could also be applied to other species of fish or even other kinds of animals, like amphibians or insects, to benefit the broader scientific community.

P311 Utilizing Microsoft Office Applications for Inventory Management

AC Admire\(^*,2\), T Grgurich

Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK

Inventory management helps organizations optimize stock levels, minimize stockouts, and improve efficiency of their ordering process. One way to enhance the tracking of supplies quantity and order management is by developing a novel inventory management system using Microsoft Forms, Automate, and Excel. The proposed solution aims to address the limitations of traditional inventory systems by leveraging the capabilities of these Microsoft platforms. Our inventory management system utilizes Microsoft Forms, a user-friendly survey and form creation tool, to gather and input inventory data. Users can submit information about stock levels and order requirements through customized forms. This streamlined data entry process has enhanced our accuracy and efficiency in the ordering process. Microsoft Automate, a powerful workflow automation platform, is utilized to automate various inventory management tasks. The system is configured to trigger automatic notifications and alerts based on predefined thresholds for stock levels. Microsoft Excel, a spreadsheet program, gives us the ability to sync and collect the data from Forms and Automate to generate a report and/or analytics which provides the calculations necessary to indicate which items need to be ordered. During weekly inventory audits, when inventory falls below a specified quantity, the system will automatically indicate the amount to order from the predefined stock, ensuring timely replenishment. A good inventory system also provides reporting capabilities. From the Excel file, our facility has been able to generate reports on various inventory-related metrics such as turnover rate, stock accuracy, and usage. These insights allowed our facility to become more proactive in ordering the proper amount of goods instead of reactively ordering when there is a deficit. Our facility has been able to predict usage based on historical inventory levels and give us an instant overview of our current inventory status. The development of this inventory management system utilizing Microsoft Forms, Automate, and Excel presents a promising approach to improve the tracking of goods quantity and order management.

P312 Creation of a Premature Piglet PICU (Piglet Intensive Care Unit) Using Common Vivarium Supplies

S Kozlov\(^1,2\), LV Kendall\(^2\)

\(^1\)Inotiv co, Fort Collins, CO; \(^2\)Laboratory Animal Resources, CSU, Fort Collins, CO

Premature piglets are a common model for studying preterm infant development, including neuromuscular, gastrointestinal, respiratory dysfunctions, and anthropometric and physiological characteristics. Setting up a PICU can be a challenging and expensive endeavor. Key considerations include providing...
thermal and humidity support, oxygen therapy, and maintaining umbilical cord/orogastric access for fluid therapy, and nutritional needs. Utilizing equipment commonly found in most vivariums, we constructed individual incubators using rat cages topped with ¼ inch Plexiglas cut to fit for lids and placed absorbent pads on top of an anti-slip matting cut to fit the inside of each rat cage. Humidified oxygen support was provided individually to each incubator using the bubblers attached to a 5-outlet oxygen manifold supplied by a H-tank or central oxygen supply. Groups of five incubators were placed on top of warming devices on a counter within an insulated tray constructed from building insulation. Temperature and humidity monitors were attached to the inside of each incubator with the display facing outwards to allow for monitoring without disturbing the microenvironment. Additional humidification was accomplished with room humidifiers and by separating the PICU from the main entrance to the room using sheets of heavy-duty plastic suspended from the ceiling. Total parental nutrition, IV fluids, and medications were delivered using a variety of syringe pumps used throughout our facility. Challenges faced in the PICU included C-section and resuscitation, instrumentaion of nasogastric tubes and umbilical catheters, maintaining humidity and temperature in the incubators, medical issues due to dehydration. Specific issues encountered included meconium impaction, GI perforation, specific issues related to our model, and how we responded to precocious piglets removing their catheters and GI tubes.

P313 Thinking Outside the Cage: Innovative Opportunities for Staffing

K Klukas

Vivarium, The Hormel Institute, University of Minnesota, Lyle, MN

Current events such as COVID-19 fallout, The Great Resignation, and early retirement have presented staffing shortages for many institutions. Jobs that require in-person attendance and traditionally have lower wages have had a more difficult time retaining staff. Paired with all-time high compassion fatigue and burnout in the industry, the result has been a suffering laboratory animal field. To continue to develop current staff, individuals would need to be hired to help with laboratory animal technician duties such as cage wash, cage component preparation, sanitation, and other odd jobs to help facilitate vivarium daily operations. Working with a staffing agency to hire temporary staff would mean constantly having to train someone and then always having to start over when new temporary staff are hired. The question becomes how to find someone and/or an organization to assist with vivarium functions. Here at The Hormel Institute, University of Minnesota, laboratory coats and scrubs have been laundered by Cedar Valley Services, Inc. for many years. Cedar Valley Services, Inc. assists individuals in activities of work and community living in Southern Minnesota. While speaking with the organization, it was discovered that Minnesota Department of Employment and Economic Development (MN DEEDS) Vocational Rehabilitation Services Department works with companies to set up paid internships with individuals who are interested in their specific vocation. MN DEEDS will sponsor the first 130 hours of the internship, after which the company will finance the last 130 hours of the internship. While collaborating with MN DEEDS, a Laboratory Attendant position was created to closely align with the needs of the department. A Laboratory Attendant Skills Checklist was created to allow all staff to be involved in training when available and picture tutorials were produced to help with common duties. Currently, the program has exceeded all expectations. The first intern here at The Hormel Institute has far surpassed what was expected of the internship. This success has evolved into the permanent hire of the first intern and the addition of several interns as the company continues to grow.

P314 In-House Developed Digital Tools Providing Point-of-Care Reporting Applications Improve Operational and Veterinary Efficiencies in Laboratory Animal Care Program

C Chang*, K Imakura¹, C Brown¹, T Garcia¹, D Margolies¹, A Torok¹, DM D’India¹, K Patil²,³, R Uthamanthil¹,²

¹Office of Animal Care, Seattle Children's Research Institute, Seattle, WA; ²Dept. of Comparative Medicine, University of Washington, Seattle, WA

Digital tools improve efficiency of communication, reporting and record keeping in laboratory animal care programs. Typical modes of communication and documentation such as phones, paper forms, and electronic files can result in delays in animal care, loss of vital information, and challenges in the collation of information for effective oversight and management of the care of the animals and facility. Commercial digital solutions are available, but usually come at a high cost, limited customization capabilities, and challenging user interfaces that slow adoption by animal technicians who are most likely to see and report concerns. Using organization-wide readily available digital tools and provisioning mobile devices, we created custom mobile applications for our animal care staff to submit cage-side reports regarding veterinary or facility related issues. The average time to submit mortality reports was reduced by 66.6% (p<0.0001) and health issues by 21.9% (p<0.003) as compared to previous methods of reporting dead or sick animals. Time savings was retained even after adding photo requirements with savings of 48.1% (p<0.0001) and 17.0% (p=0.01) respectively. Reports are instantaneously recorded to a centralized location for easy access and can be connected to visualization software or automated workflows with customized triggers to escalate issues without additional steps to be taken. The time saved by animal care staff can be allocated to other husbandry and care activities while veterinary and operational staff receive standardized reports and earlier notifications granting our program increased efficiencies and better, faster outcomes.
P315 Consistency of FMT Colonization of Gnotobiotic Mice in IsoIVC-P

AF Muino*, B Everett, C Parr, CM Perry, RW Engelmann
University Of South Florida, Tampa, FL

Since large experimental gnotobiotic murine cohorts become segregated into multiple IsoIVC-P, we were interested in determining the fecal microbiota in specific pathogen free (SPF) fecal microbial transplant (FMT) gavage-administered mice for consistency of colonization. Forty-four, 22 male and 22 female, germfree 8-10-week-old BALB/c mice were assigned to one of two cohorts, with 12 mice, 6 male and 6 female, administered sterile phosphate buffered saline (PBS) by gavage, and 32 mice administered SPF FMT by gavage, each weekly. PCR for bacterial 16s rRNA and microbial cultures and shotgun sequencing of fecal pellets of each mouse was performed prior to study, and fecal microbiota shotgun sequencing of each mouse performed at weeks 1, 3, and 5. Comparisons of colonization showed that the SPF FMT colonized each individual mouse of the FMT administered cohort similarly (i.e., no individual variability), whether mice were housed in the same or in a different IsoIVC-P (i.e., no cage effect). Among SPF FMT gavage administered mice, the greatest number of OTUs that were different both within and between groups was from weeks 1 and 3 and the fewest between weeks 3 and 5, suggesting stabilization of the microbiota transfer over time. Overall, female (n=44 samples) and male (n=40 samples) mice administered SPF FMT had a differing relative abundance of three OTUs: *Kineothrix* sp000403275 (FDR p-value=0.040; 0-22.8, 0.9 and 0-16.2, 2.7 [min-max, median of female and male mice, respectively]), *Bacteroides uniformis* (FDR p-value=0.042; 0-37.5, 0 and 0-0, 0), and *Roseburia* sp. 1XD42-69 (FDR p-value=0.042; 0-3.1, 0.7 and 0.1-4.4, 1.0). Evenness and diversity did not differ between weeks 1 and 3 (p=0.064 and 0.313, respectively), but did differ between weeks 1 and 5 (p=0.002 and 0.006) and weeks 3 and 5 (p=0.005 and 0.016). Richness differed between each timepoint (p<0.05). Large experimental gnotobiotic murine cohorts can be successfully housed in multiple IsoIVC-P.

P316 Reusable Polyester Bags for Autoclaving Rodent Caging

J Smachlo*, G Okenka
Research Animal Resources, University of Minnesota, Minneapolis, MN

Autoclave bags for sterilization are commonly used in animal care facilities for both clean and soiled cages. Our institution primarily uses polypropylene bags as the secondary containment for autoclaving caging and associated material from ABSL-2 spaces. However, after multiple cycles of autoclaving in polypropylene bags, polysulfone rodent cages begin to display varying degrees of permanent cloudiness. This can impede the ability to perform daily rodent health checks while minimizing disturbance of the animals and increases the need for more frequent cage replacement. Additionally, single-use polypropylene bags generate excessive waste. The use of reusable bags for autoclaving cages also presents an opportunity to institute more environmentally friendly practices and reduce operational costs. A pilot study was conducted to assess whether the use of 100% polyester reusable bags for autoclaving polysulfone mouse cages achieved appropriate sterility and reduced or slowed the onset of cage cloudiness compared to polypropylene bags. Twelve polysulfone cages with minimal to no cloudiness were selected for use. A baseline picture was obtained of each cage before the first autoclave cycle. Six cages were autoclaved daily in a polypropylene bag and six in a 100% polyester reusable bag. Pictures of all cages were obtained after each autoclave cycle to monitor the development of cage cloudiness. Sterilization strips, biological indicators, and chemical indicators were included in each bag every cycle to verify appropriate sterilization was achieved. Over the eight days of the pilot study, all cages autoclaved within both styles of bags achieved appropriate sterilization. Cage cloudiness between the two groups was similar with an average ranking of 1.5/5 on a cloudiness scale, where 0 was baseline. Preliminary results indicate that the use of 100% reusable polyester bags did not slow the progression of cage cloudiness compared to polypropylene bags. Further data will be collected to assess the progression of cloudiness over a 30-day period. The lack of difference in cloudiness between the two bag materials presents an opportunity to further investigate the application of reusable autoclave bags to promote greener practices and reduce daily waste.

P317 Flooded Cage Response Cart

FJ Rendon-Gonzalez*, R Castore, P Dawes
Vivarium Operations, Regeneron Pharmaceuticals, Inc, Tarrytown, NY

Many research facilities have automated watering systems providing consistent, high-quality, variable-free drinking water to their rodent housing racks. Though automated watering systems provide mice with on-demand access to clean, fresh water, 24 hours a day, 7 days a week, there is the risk of flooding. Drinking water is released from the watering valve at a controlled rate when the mouse licks, bites, or noses the stem of the watering valve. Water flow stops when the stem is released and returns to normal position. Uncontrolled water leakage into a cage can occur due to plugging/clogging of the water valve with bedding or nesting materials, causing the stem to remain in the water-flow position. It can also be caused by a malfunction of the water valve or even the rack. Unfortunately, any of these can result in a rapidly flooding cage. Rapid response to a flooded cage is critical for improving the chances of saving mice. Preparing and gathering essential materials to remove mice from flooded cages, dry the mice, and place mice under heat, can take upwards of 8 – 10 minutes. The Flooded Cage Cart was developed as a timesaver and lifesaver by having all items needed on the cart for immediate response when a flooded cage is found, and mice can be quickly
assessed. Having everything you need in one central location at all times significantly shortens response time. For mouse health and welfare, it is imperative to remove mice from a flooded cage, dry them and return body temperature to normal as quickly as possible. The Flooded Cage Response Cart is mobile and contains all necessary resources in one location to rapidly respond to a mouse cage flood and provide them with essential care before being returned to the IVC housing rack.

P318 The Long and Short of It: Anogenital Distance in African Spiny Mice (Acomys cahirinus) as “Telltail” Sexual Differentiation

M Boulanger*, P Lester

Unit for Laboratory Animal Medicine, University of Michigan, Ypsilanti, MI

Anogenital Distance (AGD) is a fundamental observation utilized in laboratory animal husbandry and medicine, providing a rapid method for sexing mice (Mus musculus). However, AGD has not been characterized previously in African Spiny Mice (Acomys cahirinus). Acoyms spp demonstrate unique regenerative capacities and is the only known rodent to menstruate, increasing their popularity in research. Yet they are also readily prone to sloughing skin with manipulation, emphasizing the utility of non-invasive exam characteristics. The AGD of adult (> 3 months, 50 ÷ 4 grams) spiny mice was measured (n= 20) by the length of the perineum. Anesthetized mice were sexed based on the ability to extrude the penis and the presence of nipples, and calipers were used to measure the AGD. Additionally, photos were collected of the perineum, digitally processed, and scaled with in-frame rulers to measure AGD. AGD was found to significantly differ (p < 0.05) between female and male spiny mice, indicating sexual dimorphism as reported in other species, and measured to be 0.5 ± 0.11 and 1.4 ± 0.18 [cm], respectively. A male:female AGD ratio of 2.8 was observed, similar to reported AGD ratios in Mus musculus. No statistically significant (p < 0.05) differences were determined between the caliper and digital methods, reinforcing results and suggesting either use in future practice or studies. The presence of nipples has historically been suggested as the only reliable method of sexing spiny mice. However, this requires handling and can be challenging depending on mouse age, parity, viewer experience, and season. As such, the ratio of AGD represents a reliable visual method for sexing adult African Spiny Mice while avoiding unnecessary handling or anesthesia.

P319 Evaluation and Time and Cost Savings Analysis of Extended Sanitation Interval of Caging Accessories and Automated Watering Valves

BK Meredith1,2, BM Clancy2, A Ostdiek2, G Langan2, K Luchins2

1North Carolina State University College of Veterinary Medicine, Raleigh, NC; 2Animal Resources Center, University of Chicago, Chicago, IL

Although the Guide suggests changing rodent cage accessories every 2 weeks, it also states that “decreased sanitation frequency may be justified if the microenvironment in the cages, under the condition of use, is not compromised.” Increased use of individually ventilated cages (IVCs) for rodents has led to investigation of extended cage sanitation intervals. The purpose of this study was to evaluate extended sanitation intervals of cage accessories (automated watering valve, wire bar lid, and filter top) of mouse IVCs at our institution. We hypothesized that there would be no significant difference in relative light units (RLUs) measured by ATP luminometry of these cage accessories at control time 14 days compared to each time interval: 28, 56, and 84 days. We extended the study for automated watering valves to 168 days and hypothesized that we would see no significant difference in RLUs. We also hypothesized that a time-and-motion study performed by moving to a sanitation interval of 84 days for all components would result in significant time and cost savings. A total of 24 cages containing 4 or 5 mice each were used for swabbing cage accessories. An ATP luminometer was used to detect organic matter by quantifying the amount of ATP present, and results were given in RLUs. There were no significant differences (P > 0.05) between 14 days and each other time point for all cage accessories, including the automated watering valves extended study. Additionally, the time and cost savings analysis found that extending the sanitation interval of cage accessories to once every 86 days for a mouse census of ~22,000 cages would save ~7,000 technician hours annually for a total labor cost savings of ~$240,000. Overall, extended rodent cage change of accessories is a feasible alternative that decreases workload of animal care staff without compromising sanitation.

P320 Iodine Immersion of Pups Coupled with Cross Fostering to Eradicate MNV and Helicobacter from Mouse Colonies

R Kehoe*, JR Eswaraka, LA Bright, B Singh, D Reimer

CMR, Rutgers University, Monmouth Junction, NJ

Eradication of diseases from mouse colonies benefits scientific research and animal welfare. Previously described techniques, such as surgical rederivation, may be costly. The purpose of this study was to assess the efficacy of iodine immersion coupled with cross fostering for eradication of Murine norovirus (MNV) and Helicobacter spp. This study also aimed to modify the existing iodine immersion technique described
for Helicobacter spp. to prevent pathogen transmission and cannibalism. This study hypothesized that iodine immersion of pups would be as effective at clearing MNV as Helicobacter in a mouse colony. Within 48 hours of birth, 34 newborn litters of mice of various strains were immersed in warmed, diluted iodine, and transferred to a Swiss Webster foster mother negative for MNV and Helicobacter. The presence of MNV and Helicobacter in donor dams, weanlings, and adult animals were confirmed through fecal PCR. Out of the 27 litters from MNV and Helicobacter positive mothers, all 27 were effectively cleared of MNV and Helicobacter at weaning and eight weeks following weaning. Iodine immersion coupled with cross fostering is an effective and cost saving method to eradicate MNV and Helicobacter spp. in colonies affected by both pathogens.

P321 Enrichment Database: A Comprehensive Resource to Unify the Use of Enrichment to Improve Animal Welfare

B Macleod1, K Bott

Animal Quality, Taconic Bioscience, Earlton, NY

The use of enrichment for animals housed in a laboratory setting is crucial in supporting the animal’s physical and psychological well-being while also promoting natural behaviors and reducing stress. Since rodent strains and stocks display individualized phenotypes, their enrichment requirements will naturally follow suit. In facilities which house large numbers of different animal lines, there can be uncertainty regarding the specific required enrichment items for each line with the diversity of available options to provide to the animals. Similarly, as new hires begin the training process or as unfamiliar animal lines are introduced into facilities, staff may struggle with understanding enrichment requirements. In order to avoid confusion and to unify systems in place for enrichment, veterinary staff at a large, multi-site animal vendor developed a digital enrichment database. The enrichment database acts as an online repository designed to provide detailed descriptions of enrichment devices required for individual lines. In addition to providing descriptions, it also provides implementation guidelines for individual enrichment devices and allows staff to search and filter for individual lines. Overall, it aims to improve the quality of life for laboratory animals by promoting effective use of enrichment strategies and promotes harmonization of husbandry for individual lines which are produced at more than one location. Acting as a valuable resource for animal care technicians, researchers, and other laboratory animal professionals, the enrichment database has proven to be a user-friendly, comprehensive resource that promotes the proper use of enrichment for animals in the laboratory animal setting.

P322 Refinement in Vampire Bat Husbandry

RE Agosto-Quinones1, V Bergdall, B Youngblood

University Laboratory Animal Resources, The Ohio State University, Columbus, OH

As of November 2022, a new research animal was welcomed into the Large Animal Facility at The Ohio State University, Desmodus rotundus commonly known as Vampire Bats. Within research there was a lack of documents providing guidance for vampire bat care. The research, veterinary, and husbandry team had to work together to develop a plan. As a team, we had to devise our own guidelines considering their welfare, the team’s flexibility, and previous consultations with zoo veterinarians experienced with vampire bat care. We discussed their transportation, housing, space requirements, sanitization, enrichment, and feeding methods. The husbandry team was tasked with providing food every morning, which was defrosted beef blood, and verified that the environmental conditions of the enclosure were within the established range. At the end of the day, the feeding supplies were removed from the enclosure and cleaned. Afterwards the enclosure’s floor was cleaned in a manner that prevented their escape and was safe for the animals. For the first three months it was a success and the colony had adapted to our care and procedures. Shortly after, several females gave birth to new pups, and we began to find unresponsive pups and adult bats. Injuries were found on all of them once they were inspected for a postmortem. Because of this it was theorized that this may be due to resource guarding, fighting, and the birth of new pups to the colony. Our procedures were reevaluated by the research and veterinary team, as a result the feeding time was extended, and small towels were hung to provide additional hiding places and textures for them to cling to. Vampire bats have an extended feeding time and access to more hiding locations, which reduced the incidence of injuries.

P323 Mouse Allergen Exposure on Single-Use Versus Multi-Use Disposable Gowns: A Pilot Study

A Kumar1, WO Williams2, E Moore2, B Singh3

1Ontario Veterinary College - University of Guelph, Milwaukie, OR; 2Ctr for Animal Resources, Cornell University, Ithaca, NY; 3Comparative Medicine, Rutgers University, New Brunswick, NJ

During the SARS CoV-2 pandemic, the widespread shortage of disposable gowns necessitated reuse of these gowns at some institutions. Cost savings and decreased waste associated with disposable gown reuse were incentives for continuing to reuse gowns, after the supply issues were rectified. One concern of multi-use gowns was increased personnel exposure to the rodent allergen Mus m1. We compared single-use and multi-use disposable gowns, hypothesizing that the reuse of disposable gowns during rodent clinical case management increases the exposure to Mus m1. At the barrier mouse facility, each disposable gown received 10 exposures per test
Analysis reveals a shorter conditioning period between first occurrences following weight collection. Preliminary chairing session data was also reviewed to determine participation reliability, the frequencies of successful weight collection would be lower in duration than the chair weighing method, and that the rate of voluntary participation. It was hypothesized that the total time to condition an animal to shift into the cage-side scale for non-human primates in a way that increased agency and allowed them to voluntarily participate in care to optimize wellbeing.

P325 Avoiding Breeding Burnout: An Enriched Life

J MacCabe*, WO Williams
CARE, Cornell, Ithaca, NY

Promotion of species-specific behavior requires a little understanding, creativity, and time spent to bring undeniable rewards to research animals and the humans providing their care. Not only does promoting species-specific behavior enrich animals’ lives, but it also improves animal welfare and increases our understanding of the basic needs of the species; thus, we can implement strategies to meet those needs. Zebra Finches (Taeniopygia guttata) and Budgerigars (Melopsittacus undulatus) are gregarious species requiring a substantial amount of enrichment to thrive in captivity. Keeping these species in a laboratory setting provides numerous enrichment hurdles. These species are commonly used for behavioral research, and unenriched birds may exhibit undesirable behaviors and health issues. Conditions such as poor breeding performance, feather plucking, lethargy, muteness, among other problems may result in birds which are unsuitable for research. At Cornell University, we examined the impact of various enrichment on the quality and quantity of a colony of breeding Zebra Finches and their offspring produced. By providing unique opportunities for species-specific enrichment that promote species-specific behaviors in breeding, feeding, social interaction, bathing, and structural opportunities, we have been able to reduce the number of breeding pairs needed to obtain the same number of offspring. By following these strategies, we experienced a four-fold increase in production, and a dramatic increase in the quality and well-being of parents and offspring. We are excited to expand and adapt these enrichment strategies for the benefit of other bird and non-avian species throughout the diverse Animal Care and Use Program at Cornell University.

P324 Utilizing Cage-Side Scales for Efficient Weight Collection in Non-Human Primates (NHPs): A Comparative Analysis

A Calvillo*
Animal Care Team, Neuralink, Fremont, CA

Obtaining accurate and regular body weight measurements is essential in the management of non-human primates (NHPs) in research. Traditionally, animals are sedated or jumped and moved to a scale away from the enclosure. These processes can be time-consuming, stressful for the animals, and increase the potential for injuries to animals and staff. To refine this procedure, 17 macaques were operantly conditioned to voluntarily enter a chair and be rolled to a scale, and later trained to voluntarily shift into a scale secured to their home cage. The objective of this pilot study was to evaluate the feasibility and reliability of cage-side scale use as a non-invasive alternative for weight collection in non-human primates. This was done by comparing the number and duration of training sessions required for animals to voluntarily perform these behaviors at a mastered level, as well as the reliability of voluntary participation. It was hypothesized that the total time to condition an animal to shift into the cage-side scale for successful weight collection would be lower in duration than the chair weighing method, and that the rate of voluntary participation would be higher. Conditioning was considered complete when the animal obtained the criteria of maintaining a calm body state throughout the weight collection process. To determine participation reliability, the frequencies of successful weights and the refusal to participate in sessions were collected and compared for both chair and cage-side sessions. Subsequent chairing session data was also reviewed to determine the extent of any behavioral regression that may have occurred following weight collection. Preliminary analysis reveals a shorter conditioning period between first introduction and successful weight collection for animals using the cage-side scale when compared to chaired weighing. The animals also showed a reduced latency to participate, fewer instances of fleeing, and a lack of regression recorded in subsequent sessions during cage-side weight collection. The use of a cage-side scale proved to be a practical and reliable method for collecting weights of non-human primates in a way that increased agency and allowed them to voluntarily participate in care to optimize wellbeing.

P326 A Mutually Enriching High School Student Internship Program

R Beiler*
Animal Science Center, Boston University, Boston, MA

Boston University Animal Science Center (BUASC) was contacted by a local agricultural high school in the spring of 2022 requesting support for student externs, as a previously scheduled externship program became unexpectedly unavailable. The opportunity to provide an in-depth look at all
aspects of our animal care and research program was accepted with enthusiasm as this could be mutually beneficial to both parties. Students were required to apply to and interview for acceptance to the program through their school’s administration, which ensured a baseline of interest with the majority expressing plans to pursue careers in research or veterinary medicine. A pilot one-week experience was generated for twelve high school juniors and a teacher chaperone. Students were granted access to a wide variety of departments (including Occupational Health, Environmental Health & Safety, and IACUC) that interact with BUASC. Students also learned about the career paths our staff have taken and participated in hands-on labs and routine husbandry tasks in rodent barrier and aquatics facilities. Feedback was positive and our participation was again requested for 2023, for which a two-week experience was provided for ten high-school juniors. Recruitment of additional BUASC staff to participate involved mentor training and mandatory background checks since the students were all minors. Staff who volunteered were asked to oversee shadowing opportunities in their facilities and to teach students about day-to-day activities. Additional activities for the second year included research conversations with investigators and preparation of enrichment items for primates. This collaboration has only been in place for two years, but it is hoped that it creates an additional pipeline of job applicants amidst a highly competitive local hiring market. Other institutions may consider similar high school-level experiences for both improved recruiting and job satisfaction by participating staff.

P327 Feed Placement Preference in Golden Syrian Hamsters

AR Whigham*

Research and Development, Inotiv, San Antonio, TX

Golden Syrian hamsters have undergone a resurgence in popularity as a research model following the SARS-CoV-2 pandemic and their susceptibility to the disease. Unfortunately, the husbandry literature concerning the feeding location of hamsters has not been recently re-examined, which has led to facilities housing hamsters in cages designed for other rodents. Although the literature recommends feeding hamsters on the floor, citing narrow feed hopper bars as contraindicated for a hamster’s wider muzzle, facilities may feed hamsters in an elevated hopper for various reasons. Ground feeding may lead to increased food waste from it being soiled by dirty bedding as well as increased labor time for animal technicians to ensure animals have adequate amounts of edible feed or scraping dirty cages with feed waste stuck to the cage bottom. To better understand the desired method for feed placement for hamsters, an initial study was conducted to evaluate feed placement preferences. This study utilized socially housed, age-matched male and female hamsters (housed by sex) and provided water and feed ad libitum. One group was ground fed, the second fed in a conventional raised feed hopper, and the third, provided feed on the ground and in a hopper. Feed was weighed before and after providing to the animals, with any abnormal interaction being noted, such as grinding. Preference results were assigned based on amount of feed removed from original placement. This team proposes that hamsters are adaptable and will consume food from any location in the cage and adequate husbandry can be provided regardless of feed placement. Future research into animal preferences to update standard husbandry practices is needed to ensure animal research models can safely express species-specific behaviors. The animal manipulations described in this presentation have been approved by Inotiv’s IACUC and are verified as original work of the author listed.

P328 Long-term Seroconversion Risk Among a Cohort of Cynomolgus Macaques

A Khatri2,1, M Bazile2,1, K Breyer2,1, J Bernal2,1, M Hargaden2,1, J Franco2,1, M Simkins2,1, R Santos2,1, S Somanathan2,1

1Comparative Medicine, Pfizer Inc, East Lyme, CT; 2Rare Diseases, Pfizer Inc, Cambridge, MA

AAV drug development has been aided by use of preclinical animal models to assess vector safety and efficacy. However, AAV vector administration is ineffective in animals carrying neutralizing antibodies from a previous exposure. Seronegativity is determined by prescreening animals for anti-AAV antibodies using either a cell-based neutralizing antibody (NAb) assay or an ELISA-based binding antibody (BAb) assay. However, even NAb negative animals risk seroconversion while awaiting study start which can lead to reduced gene transfer. Here, we undertook a longitudinal study over 6 months to assess seroconversion risk among a cohort of cynomolgus macaques. Animals were prescreened and twelve AAV9 seronegative macaques (6/gender) were procured, shipped, and housed (2/cage) before study start. Animals were bled monthly, and serum investigated for anti-AAV9 antibodies. While animals were NAb negative before shipment, two out of the twelve animals (Female A and Male B) were AAV9 NAb seropositive before study start. Animals were positive for the study duration with no fluctuations in titer. Cage mates co-housed with the seropositive animals did not seroconvert suggesting a lack of transmission. BAb were marginally higher in the animal with higher NAb titer. The seroconversion of two animals to AAV9 led us to investigate NAb and BAb against a panel of AAVs belonging to different clades (AAV1, 2, 3B, 5, 6, and 8). Animal Male B had cross-reactive NAb to AAV8, albeit at lower levels, while Male C had higher NAb to AAV3B, and lower cross-reactive titers against AAV1 at all time points. IgM binding antibodies were higher in one animal (Female D) against all AAVs at study start that declined below detection levels by 2 months. Surprisingly, there was no concordant increase in IgG levels against any AAV in this animal. Similarly, IgG levels peaked in two animals after 4 months without an expected prior increase in IgM levels. These findings suggest the risk of seroconversion of a naïve animal co-housed with a seropositive cage mate appeared to be low. Finally, while NAb titers were more stable, IgG and IgM binding antibodies fluctuated more during the study and were less predictive of seropositivity.
P329 Effect of Novel High-Fat Diet Feeding Methods on Food Wastage, Hair Coat Grease Accumulation, and Weight Gain in C57BL/6ncrl Mice

AR Guy¹,², S Rasmussen¹,², M Raymond²

¹Postdoctoral Training Program in Laboratory Animal Medicine, New York University-Regeneron, New York, NY; ²Division of Comparative Medicine, NYU Langone Health, New York, NY

Soft-pelleted, high-fat diets are greasy and crumble easily. Due to their poor consistency, high-fat diets often fall through the wire bar lid resulting in food waste. Mice fed high-fat diets frequently experience hair coat grease accumulation. Our study compared the performance of six different feeder designs: a commercially available wire bar lid feeder, a commercially available modular feeder, a novel wire bar lid feeder, a novel floor feeder, and two novel wire bar lid inserts. Novel feeder designs varied the spacing between wire bars. Male C57BL/6NcrSlc (n=120; 4/cage) mice, were randomly assigned to one of the six different feeding conditions and were fed a soft-pelleted, high-fat diet for 12 weeks. Mice were individually weighed and scored for hair coat grease accumulation twice weekly. Feeders and cage bottoms were weighed once weekly. Mice gained the most weight when fed using the commercially available wire bar lid feeder (23.8 ± 1.8 g) and the novel wire bar lid feeder (18.8 ± 2.3 g). Weight gain was significantly less when mice were fed using the other feeder designs (commercially available modular feeder 15.5 g ± 2.1 g; novel wire bar lid inserts 15.7 ± 3.4 g, 10.5 ± 1.8 g; novel floor feeder 14.0 ± 3.9 g; P < 0.001). Due to diet wastage, the commercially available wire bar lid feeder required replenishing 2-3 times per week and cages necessitated more frequent cage changes. Mice housed in cages with commercially available wire bar lid feeders also had considerable hair coat grease accumulation. By comparison, cages with novel feeder types did not require diet replenishment. In conclusion, careful consideration of feeder selection is crucial in balancing weight gain and resource management when creating diet-based mouse obesity models. Optimal feeder design should minimize food waste and mouse hair coat grease accumulation while promoting weight gain.

P330 An Attempt to Standardize the Appropriate Breeding Environment by Using Environmental Enrichment Strategies in Naturally-Aged Mice

N Ogiso¹, K Tomita², K Takano², H Kawasaki², N Morikawa¹, J Almunia¹

¹Laboratory of Research Animal, National Center for Geriatrics and Gerontology, Obu-city, Aichi, Japan; ²KAC Corporation, Kyoto-city, Japan

Our facility has kept many naturally aged mice used in gerontology and geriatric researches. Social stress (e.g., fighting, etc.) and chronic stress-related inflammation resulted in increased risk for age-related diseases. On the other hand, changes in the characteristics of the environment (e.g., enrichment, etc.) have been shown to have a large effect on animal welfare. However, the use of fixed environmental enrichment did not offer optimal long-term results, especially in females. In this study, we evaluated the effectiveness of a monthly rotary enrichment system in mice used in gerontological research. Male and female mice (n:15) were used per enrichment group (EE), C57BL/6 (C57BL/6Ncrl(B6N), C57BL/6J(B6J)) mice (4-weeks-old) were kept over their lifetime. Three environmental enrichment systems were studied: the control group without environmental enrichment (NEE), the fixed enrichment group (FEE), and the rotational enrichment group (REE). Four enrichment shafts were used in both enrichment groups: Nesting material (Enviro-dri), safe harbor retreat nest, swing and cardboard tunnel. Physiological (body weight and survival rates), behavioral (rotarod tests, etc.), and biochemical (urinary corticosterone (CORT)) were performed from 3 months old (MO) to 15 months old every three months. B6N male body weight (Ave.45.2 g) were relatively higher than NEE (Ave.42.3 g) and REE (Ave.40.4 g) at 12 months old. Rotarod test results showed that motor coordination in FEE (176.4±44.5 sec) and REE (227.3±33.4 sec) were not lower than NEE (128.0±23.0 sec) in both strains from 12 months old. The occurrence of hair loss tended to be higher in the experimental groups in both strains, but dermatitis and other skin disorder incidences were lower than NEE. The CORT were relatively lower in the 3-6 months old B6J female REE (202.0±114.2 ng/ml) than in the NEE (429.1±278.2 ng/ml). Results showed that enrichment reduced abnormal behaviors, incidence of skin problems, and stress levels in young mice. The survival rates were higher (10-20%) in EE than NEE. These results suggest that REE was highly useful specifically in strains with high stress base levels. In the future we will continue to investigate various enrichment methods combined with different densities of box animal breeding.

P331 Use of Running Wheel Enrichment to Decrease the Incidence of Food Grinding Behavior in CD-1 Mice (Mus musculus).

A Skurnack¹, L Garman², S Lane*¹

¹Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK; ²Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK

Mice and rats are the most common laboratory animals utilized in research worldwide. In a laboratory setting, mice in particular have been known to grind up and deplete food resources, which has many negative consequences that include increased costs, aberrant research data, and may indicate a deficiency in core biologic or physiologic needs, such as energy expenditure. We hypothesized that the addition of a running wheel as a novel enrichment item would decrease the incidence of food grinding in laboratory mice at our institution. Food pellets were weighed daily in 13 cages of mice known to grind their food. Experimental cages were enrolled in the study
for 8 weeks. At week two, a running wheel was placed in the cage and it remained for 4 weeks before removal. Other enrichment devices present for the entire duration of study were a chew block, red hut, and nesting puck. Control cages had all the same enrichment with the exception of the running wheel for the entire duration of study. Food pellets were weighed daily in 8 separate cages of mice not exhibiting grinding behavior and averaged to determine a normal value of food usage. Our findings show that mice known to engage in food grinding behavior demonstrated a decrease in grinding behavior shown as total reduction of average food usage (ingested or grinded) from 84.9 g/cage/day to 46.2 g/cage/day following introduction of novel enrichment. This resulted in an average reduction of ~46% between all experimental cages. Furthermore, our data suggests that there may be a lasting impact on food grinding behavior following removal of the running wheel, and possible implications for the necessity of increased energy expenditure in laboratory mice.

P332 Effects of Non-Aversive Handling on Home-Cage Activity During Cage Change in Mice

B Edgell*, L Somers, A Healy

Animal Resources and Compliance, The Center for Phenogenomics, Toronto, Canada

Cage changing has shown to cause alterations in mouse behavior including increased activity, changes in sleep and increased anxiety. Increases in activity have been found to spike immediately after cage change and then decline over many days. During a cage change, handling a mouse by the tail to move it to a new cage is still common practice in many animal facilities. Non-aversive handling techniques, such as tunnel handling, have been found to reduce anxiety when compared to tail handling. Our study aims to investigate if using non-aversive tunnel handling at cage change alters the in-cage activity during and after cage change, and if activity levels change over time as mice become more familiar with tunnel handling. Using digital ventilated cages, we compared the activity of two groups of mice with no previous exposure to tunnel handling. All mice were group housed and provided with corn cob bedding, a nest, and a plastic tunnel. One group was exclusively tail handled during bi-weekly cage changes and the other group was exclusively tunnel handled; no other experimental interventions were performed. Data was collected 24 hours a day for 20 weeks and animal activity levels were compared. Results from this study will provide further information on the impact of non-aversive rodent handling and determine if these benefits extend to routine husbandry practices such as cage changing.

P333 Relationship Between Temperament, Social Rank and Diarrhea in Group Housed NHPs

K McGrew*

Behavior, Charles River, Houston, TX

Diarrhea is a common health issue in captive nonhuman primates and incidence increases after relocation to a new social group. To determine if specific temperaments predict diarrhea incidence after relocation from pair to group housing of 8-9 individuals, Human Intruder Tests (HIT) were performed on juvenile (1.63-3.81 years) cynomolgus macaques (n = 529) of both sexes while animals were in pair housing. Sixteen observed behaviors were recorded and subjected to factor analysis that identified two dimensions: boldness vs. fearfulness and friendliness vs. aggressive. An additional temperament, anxiety, was also identified. Behaviors for each temperament were summed to create five temperament variables. Once the animals were relocated to group housing, weekly visual observations of each group were made to determine social rank of each individual and its stability over weeks. Temperament and social rank variables were tested to see if they distinguish between animals that develop diarrhea versus those that do not. Among those exhibiting diarrhea, the relationship between temperament, social rank, diarrhea severity and days of diarrhea were examined. Sex was included in the analyses as there was a trend for more males to develop diarrhea than females ($\chi^2(526, N = 529) = 3.1278, p = .08$). Males that exhibited diarrhea after relocation tended to have higher composite scores in the fearful category on the HIT than those without diarrhea (55% vs 44%), whereas females with diarrhea tended to have lower proportion of fearful scores (46% vs 58%). Among animals with diarrhea, more days of diarrhea after relocation correlate with higher boldness scores on the HIT, particularly among females ($r = .032; p < 0.05$). Greater social rank stability associated with more severe diarrhea ($r = .032; p < 0.05$). The data suggest that behavioral observations are beneficial in colony management to reduce diarrhea rates.

P334 A "Betta" Environment for Betta Fish (Betta splendens)

SL Hastings*

Columbia University, New York, NY

Environmental enrichment is essential to enhancing animals' welfare in a laboratory setting. At Columbia University, we strive to provide a variety of enrichment to all the species housed there. There has been a lot of research into the positive effects of enrichment on many different species. However, there has not been as much research on the effects of enrichment on aquatic species. At Columbia University, we house a large variety of aquatic species in many different settings. Specifically, we house over 300 betta fish. Due to their aggressive nature, Betta fish are typically housed individually with visual dividers from conspecifics, meaning they receive very little mental stimulation. We wanted to add enrichment to
their tanks to enhance their environment. We added physical and sensory enrichment to each tank. We used a polypropylene bar as a floating base, drilled holes in each piece, and added artificial plants. The piece hangs upside down so the plants are floating in the water, reminiscent of floating vegetation found in the wild. We then printed paper with a natural green environment and laminated each sheet. We placed the sheets between tanks in place of the white dividers so the betta fish would have visual enrichment on each side of their tanks. Our approach to enrichment detailed in this abstract demonstrates that there are cheap and easy ways to enrich the lives of betta fish. Although we have not collected data on the behavioral effects the betta fish display in the enrichment presence, we see them interact with the enrichment.

P335 Characterization of Palpebral Foreign Material Accumulation in RNU Rats on Paper Square and Corn Cob Bedding

A Suebsene*, A Noyce, S Adams

CRADL, San Diego, CA

RNU (Foxn1RNU-Nude) rats are an increasingly valuable model for evaluating human cell therapies in a rodent context owing to the immunodeficiency conferred by a mutation in the FOXN1 gene. The FOXP1 protein plays an important role in the development of nails, hair, skin, and the immune system and its absence results in impaired fur growth and thymus development. Consequently, RNU rats lack eyelashes and have been reported to accumulate dust beneath the palpebra and develop periorbital abscesses. Beyond the initial reports regarding dust accumulation in this strain, there are no publications describing ophthalmic issues in RNU rats on different bedding products. In our facilities, RNU rats are routinely housed on a paper square product and were observed with severe blepharitis and periorbital swelling attributable to the presence of foreign material beneath the palpebra. We found 80/83 animals with material lodged beneath the palpebra (n = 74 with both eyes effected, n = 6 for one eye effected). Extraction of the material was performed on all animals and the samples collected ranged in appearance from white fibrous squares to linearized brown masses that were consistent in texture with porphyrin-stained bedding. We hypothesized that paper square bedding was lodging beneath eyelids due to the shape and conformation of the substrate (flat, flexible) and that bedding with a different shape and conformation (round, inflexible) would reduce the incidence of this issue. To test this hypothesis, we ran a pilot study comparing the incidence rate of palpebral foreign material accumulation on animals bedded on 1/8th inch corn cob bedding (n = 8) and the paper square bedding product (n = 8). All animals had foreign material extraction performed prior to placement on one of two bedding types on day 0 and incidence of palpebral foreign material accumulation was measured on days 1, 3, 5, 7, 14, and 21. We anticipate that the completion of this pilot will confirm our hypothesis and will yield valuable data for the laboratory animal community housing this increasingly relevant rat strain with special housing needs.

P336 Behavioral and Wounding Rate Measures as Predictors of Pairing Success in Laboratory Swine

AL Bailey*, LM Hopper, MC Painter, E Griffin

Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD

Pigs are social animals that thrive in group settings. Accordingly, pair housing is one of the most valuable components of behavioral management for laboratory swine, improving animal welfare and enhancing translational research. During transport and arrival at a research facility, they may be separated from their familiar social groups and placed in proximity to unfamiliar pigs. This disruption of their social dynamics can induce stress and anxiety. When attempting to pair pigs, caged interactions can result in aggression and injury during the introduction process. There is little published, empirical data regarding the behavior of laboratory swine during social introductions and so data guidelines describing what criteria determine incompatibility are lacking. To develop metrics for use when pairing swine, we examined behavioral parameters during the pairing process and measured during the first week of a social introduction. We created a behavioral ethogram and wound scoring system, based on size and location of each wound. We recorded affiliative and aggressive behaviors cage-side during continuous one-zero observations every minute for 20 minutes, both during the pairing event and one week post pairing. Wounds were scored at baseline prior to pairing and at time points 0.33h, 4h, 24h, 48h, 72h, 168h post pairing. Wounds were scored by severity using a rating scale, including number and body part. We predicted that affiliative behaviors and low wounding rates within the first 72 hours would predict longer term (1 week) social compatibility. To date, we have collected data on 15 pairings. Preliminary data revealed that most social wounding, indicated by a wound score above 7, was inflicted by the 48-hour timepoint. Most wounding was characterized by bite attempts and lifting of the subordinate animal. All pigs, regardless of wounding, remained socially paired at the 72-hour mark. If initial wounding is found to predict pairing success, this can offer a quick assessment metric in lieu of behavioral observations. Moving forward, this study will validate observational measures (behavior and wounding rates/severity) to develop a simple and practical assessment tool for facilities to use when socializing swine or assessing swine compatibility.
Sterilization of animal testing facilities is performed not only on articles (breeding equipment, instruments, and laboratory equipment), but also on breeding rooms and laboratories to prevent the development of pathogenic microorganisms. Each sterilization method has its own characteristics and there have been reports that some methods caused corrosion and the accumulation of residues on breeding equipment (rubber products, etc.) and electronic equipment. We evaluated a new system of combined gas equipment containing formaldehyde gas components with methanol as raw material, which allows decontamination with no corrosion and no residue. Equipment costs (initial costs, running costs), workability, etc., will also be introduced. The method was performed in two facilities of different sizes: the disinfection room (DR, 10 m3) and the Infectious Diseases Laboratory (IL, 50 m3). The decontamination devices used were a steriXcure (SEAlive.Inc) gas generator and a gas decomposition device. To evaluate the sterilization of each room, chemical indicators (CI) (F-Sign) and biological indicators (BI) (Bacillus atrophaeus incubated for 7 days) were placed in four locations in the DR and eight locations in the IL. Gas decontamination was performed for 4.5 hours in the DR and 7 hours in the IL. CI results showed the effective sterilization in both rooms. In addition, BI were negative from day 1 to day 7 (spores SAL<10^-6). These results confirmed the adequate decontamination of both rooms. Furthermore, no residues or corrosion of instrumentation, electronic devices or experimental equipment were observed. The running cost of the decontamination system is as low as $10 per operation using only methanol, which is the lowest among sterilization (decontamination) equipment. In the future, we would like to try the decontamination effect of air conditioning ducts. Gas phase nucleic acid digestion method is effective for complete DNA degradation, and therefore for disinfection of COVID-19 research laboratories and is expected to become a next generation sterilization solution. Currently, the manufacturer is developing a decontamination system using ethyl alcohol as a raw material.

P338 Tenrec Ecaudatus Enrichment

MD Sheets’, R Crispino

LARC, University of California San Francisco, San Francisco, CA

The family Terecidae consists of four sub-families and twenty-nine species. Native to Madagascar, they inhabit almost every ecological niche on the island. The tenrec in general is a small mammal that weighs between 10 g to 2 kg, most are terrestrial but some do inhabit water ways and arboreal habitats. Common tenrecs are the largest of the species and hold the record for the most animals in a litter (up to 30). They live in a variety of environments such as grasslands and urban areas. In the research setting, there is very little information on their behavior or enrichment preferences. In order to provide effective enrichment to our newly acquired group of Common tenrecs, we reviewed the literature, and observed our animals in their home cages. We noticed they were very interested in finding and sourcing food, so we focused on novel enrichment strategies to encourage foraging behavior. Simultaneously, we also investigated interest in behaviors like climbing and tunneling.

P339 Why Handling Laboratory Livestock Should Not be a Rodeo Event and the Journey to More Humane, User Friendly Techniques

L Panepinto*, T Sauer

P&S Farms, Masonville, CO

One of the greatest challenges for researchers, veterinarians and animal care staff is finding alternatives to the traditional handling methods typically taught to animal science and veterinary students. Young domestic swine, minipigs, sheep and goats can be some of the more difficult animals to handle, especially for procedures like blood sampling, IV infusions, IM injections, oral dosing and hoof trimming. This poster describes the journey from rodeo wrestling methods to more humane and less stressful techniques for handling and restraining livestock in the laboratory. One example is our relocation of the typical site for intramuscular injections in swine from the highly innervated ham muscle to the lightly innervated neck area. The side of the neck has much thinner skin than the upper rear leg, allowing for use of much smaller needles. Minimal innervation, combined with smaller needles greatly reduces the pain experienced by the animal, making such injections significantly less stressful for both the pig and the veterinarian or technician. Another example is the use of more humane, minimum stress restraint to perform oral dosing in variably sized swine. This allows for the insertion of a stomach tube without the need for a “swine mouth speculum” typically recommended for such procedures. Illustrations of these and other more humane procedural methods will be included in this poster for not only swine but sheep and goats as well.

P340 Validation Study of Liquid Sterilants for Sterilization of Flexible Film Isolators

KY Jen’, AM Williams

Charles River Laboratories, Wilmington, MA

Flexible film isolators have been used as housing for germ-free (GF)/axenic, gnotobiotic, and rodents with unknown health statuses for many years. For practical reasons, it may be
feasible to re-use the flexible film bag between projects. To ensure a high level of biosecurity, it is imperative that bags are cleaned and sterilized prior to re-use. To validate the use of various liquid chemical sterilants we tested six different sterilants: peracetic acid 2%, chlorine dioxide 1:5:1, chlorine dioxide 1:3:1, hydrogen peroxide 4.25%, commercial cold sterilant (peracetic acid (0.08%), hydrogen peroxide (1%), acetic acid (<10%), and sodium dichloroisocyanurate dihydrate (100 ppm). Isolator bags designated for recycle and less than 5 years in age were cleaned with a mild detergent and a dilute bleach solution, rinsed with water, and then dried. The isolator bag was inflated, and isolator shelving and cages assembled. Two, 22-oz spray bottles were filled with each test sterilant and both bottles were used to thoroughly sprayed all surfaces of the isolator bag, structural components, and caging inside of the bag. A fan was connected to the isolator to assist in ventilation of the bag and the bag was left to dry. The dryness of the bag was assessed every two hours until visible moisture was no longer seen. Ten flexible film isolator bags per sterilant were tested for a total of 60 bags. Sticky swabs and Amies agar gel swabs were collected across various surfaces within the isolator both before and after the sterilant was applied. A selection of prevalent rodent pathogens PCR assays and bacteriology cultures were performed to confirm sterilization prior to reuse. Results showed that chlorine dioxide 1:5:1, chlorine dioxide 1:3:1, and the commercial cold sterilant all resulted in negative PCR and culture results post-sterilization. The peracetic acid 2%, hydrogen peroxide 4.25% and sodium dichloroisocyanurate dihydrate all had variable positive results post-sterilization. Based on these results and as a performance standard fit to the needs of our facility, we concluded sterilizing isolators with chlorine dioxide 1:5:1 is a viable option for effective sterilization of isolators designated for reuse.

P341 Running Wheels as a Potential Treatment for Stereotypic Behaviors in Mice
A Ferraro*, J Schiavo, PS Allen, N Ting
Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT

The provision of Environmental Enrichment to research mice has evolved greatly and become widespread in recent years. Soft bedding, nesting material, gnawing devices, and running wheels have all shown to elicit natural behaviors in captivity. Unfortunately, little evidence for reducing or eliminating stereotypies appear in the literature. To evaluate specific types of enrichment that may influence stereotypies we utilized video monitoring to quantify levels of stereotypy before and after providing multiple types of enrichment. Cages were video recorded to capture behaviors during different points within the day/light cycle and scored in binary fashion (present/absent) for circling and flipping behaviors. Multiple strains, including C57Bl/6, Balb/c, CD-1, and NOD, were assessed during this period. The types of enrichment implemented after the observation of stereotypies included running wheels, suspended lofts, and double the standard nesting material (~16g) alone or in combination. Because the analysis unit was a cage, and multiple animals within the same cage displayed multiple behaviors, the observed data were correlated within the same cage. Therefore, before analysis, behavior data needed to be aggregated into a single number for each cage. One appropriate aggregation method is the standardized area under the curve (sAUC). Accordingly, data analysis and sample size calculations are based on summary statistics obtained from sAUC. Four treatment-behavior combinations provided measurable means and standard deviations to determine sample sizes needed for statistical significance. These sample size calculations were based on assumptions of the one-sided Type I error rate at 0.025 or 0.05, between 80% - 95% power. Sample sizes needed for significance varied greatly between the different treatment-behavior combinations and statistical power. The required sample sizes for extra nest and extra nest/wheel treatment groups ranged from 53-573 while wheel/circling and wheel/flipping groups ranged from 7-41. Based on these results it appears that running wheels may have an impact on the levels of stereotypic behaviors in mice. Further investigation into this hypothesis is ongoing.

P342 Portable Emergency Euthanasia System
S Langelier*, AM Williams2,3
1Production, Charles River Canada, St-Constant, , Canada; 2AALAS, Memphis, TN; 3AVMA, Schaumburg, IL

Producing and caring for laboratory rodents and rabbits is full of many challenges. Many facilities strive to find innovative, efficient solutions to everyday challenges while ensuring the welfare of animals and safety of staff. One challenge we sought to address at our facility was the ability to quickly and humanely euthanize animals that are identified with clinical conditions that warranted immediate euthanasia without disrupting the daily activities of staff. A simple, easy to use, AVMA compliant device was developed, and a small pilot study was conducted to test its reliability and efficiency. Sixty mice and rats (30 male, 30 female) varying in age from 21-180 days were exposed to CO2 in groups of five. The development and implementation of this device for emergency euthanasia can allow for a more immediate response for animals in need of emergency euthanasia at the time of an observation of pain or distress without having to wait for assigned staff to respond or to transport the animal to a euthanasia room. Additionally, it can provide staff an assurance that animal welfare and humane care is paramount to our operations. The prototype device is 9.4 liters in volume and is made of durable clear food-grade plastic. It is outfitted with an 8-liter vial of CO2 and a fresh air exhaust relief valve for venting. The animals are placed in the device and the lid secured, and the CO2 is activated. After the first minute, saturation of 40% was reached and by minute 8, the chamber reached 70% saturation and remained at this level until opened. Animals were observed throughout the entire euthanasia process and death confirmed by observing the animals for lack of movement and cessation of breathing following a 10-minute exposure to fresh air. During CO2 exposure all animals remained calm with the majority becoming recumbent within 60 seconds of introducing gas. In
conclusion, following 12 minutes of exposure, we confirmed cessation of breathing in all animals indicating a reliable, effective device. In addition, no animal welfare concerns were observed, and the device meets AVMA guidelines.

P343 Enzymatic Presoak on Primate Foraging Toys is More Effective When Compared to a Rinse and Sanitize Strategy

A Laufenberg*, J Sullivan, P Pierre, T Hausen

UW Madison- WNPRC, Madison, WI

The provision of manipulable foraging toys is important to the Environmental Enrichment Program because they allow animals to exercise species typical extractive foraging behavior. However, foraging toys often include consumable foods to increase the animals interest that are sticky in order to bind the foods together and to the toy. The elements used as binding agents (i.e., apple sauce, yogurt, peanut butter) require the animal manipulate the toy to access and remove the food, but also create a significant challenge for cleaning these devices after each use. A common strategy to clean and disinfect toys is to first remove any leftover substance from the toys manually and then sanitize the toys at high temperature (>140 degrees) in an automatic cage washer. After a trip through the cage washer toys are swabbed and tested for fomites using ATP testing. If a passing grade is obtained, toys are returned to colony usage. Frequently, various toys remain visibly soiled after going through the cage washer. A company that specializes in sanitization processes was hired to review our sanitization procedures and to provide suggestions for areas in need of improvement. One recommendation was to have toys removed from individual cages, presoaked in an enzymatic cleaner, placed in a designated rack for smaller items prior to being run through the cage washer. To determine the effectiveness of this suggested strategy we compared our current “WNPRC Rinse and Go,” cage wash procedure vs. pre-soaking items in an enzymatic cleaner for at least 20 minutes, rinsing, then cage washing. All toys were then swabbed using surface ATP tests following removal from the cage washer. For this comparison we included both dirty cage and foraging toys to cover all ranges of toys at our facility that we use a pre-rinse cage wash sanitization method. Observation: Rinsed toys still had crud and didn’t come out of the cage washer as clean as to toys that went through the soaking routine suggested by sanitation solutions. Together, these observations suggest that an enzymatic presoak is more effective when compared to a rinse and sanitize as strategy. Suggested labor benefits include saving staff time and water usage with using a rinsing and cage washing method.

P344 Battle with the Bots – Optimizing Your Semi-Automatic and Automatic Fish Feeding Systems

KE Kayser*1,2, A Guy1,2, SE Woods1,2

1Veterinary Post-Doctoral Training Program, NYU-Regeneron, New York, NY; 2VelociGene, Regeneron Pharmaceuticals, Tarrytown, NY

Despite the widespread and growing use of zebrafish as a model in biomedical research, standardized feeding protocols have yet to be established. Instead, individual institutions typically implement feeding procedures based on available resources – typically labor and technology. To improve efficiency and standardization in zebrafish feeding, semi-automatic and automatic fish feeding systems are available. In our facility, we sought to validate the use of two types of technologies, a semi-automatic solid feed dispenser and an automatic fish feeding system, for implementation in our zebrafish feeding program. To do this, weights of feed dispensed by both systems were assessed, with manufacturer-recommended settings providing a starting point for application. Despite controlled use of the same type of technology with the same diet and associated settings, the variability in the amount of feed dispensed was notably greater than what was expected. Though these systems may improve efficiency in labor of feeding, further refinement was warranted to improve standardization; this was achieved in our facility through labor-intensive end-user adjustments exploiting the technologies’ inherent capabilities and limitations. In addition to mechanical settings, we assessed several parameters that could potentially influence variation, such as the use of desiccant packs, feeding aperture size, amount of feed present in the device at the time of feeding, and the type of diet. After extensive validation and internal refinement of both systems, we reached optimization, established acceptable usage protocols, and created a quality control program to continuously monitor the performance of these systems in our zebrafish feeding program. Here, we describe the process we performed to achieve targeted feeding amounts for adult zebrafish using a semi-automatic solid feed dispenser and an automatic fish feeding system.

P345 Evaluation of a Novel Electric Shock Trap for Rodent Pest Control in Animal Facilities

MD Wallis*1,2, JS Villano2, C Ondock2

1Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD; 2Research Animal Resources, Johns Hopkins, Baltimore, MD

An effective rodent pest control program is an important aspect of any animal care and use program as it minimizes the risk of pathogen transmission to ensure the SPF status of rodent colonies and protect human safety, especially as to prevent zoonoses. There are many commercially available rodent trap options but four big factors to consider in choosing one include efficacy, costs, easy maintenance, and animal welfare
assurance. Live capture traps require significant monitoring and could have questionable efficacy. Meanwhile, mechanical kill traps can be inhumane. According to the AVMA Guidelines, kill traps do not always render a rapid or stress-free death, and thus, use of live trap followed by euthanasia is preferred. However, the Guidelines also state that although newer technologies are improving kill trap performance in achieving loss of consciousness quickly, individual testing is recommended to be sure the trap is working properly. Here, we evaluate an electric shock trap as an option for vermin control in animal facilities. This trap utilizes a high voltage shock train to quickly render animals unconscious and continues until respiratory and cardiac arrest. This system also has a robust set of digital integration, notification and management features. We evaluated the trap’s ability to induce irreversible loss of consciousness and eventual death with minimal pain and distress. This was performed by placing a modified trap (allowing visualization of the animal’s interaction within the trap) in a plexiglass open field (24”x 12”x 8”) and allowing animals to freely interact with the trap. Assays were videotaped by an overhead and a side camera. We measured time to trap, time to induce loss of consciousness, and time to death using male and female mice wild-type B6 and BALB/c mice. Video recordings were reviewed by two personnel to measure time points. Our results indicated that the trap has a 100% kill rate of animals that trigger the trap. Mean time to trap was 50 seconds, mean time to unconsciousness was 14 seconds, and mean time to death was 25 seconds from trap activation. In conclusion, electric shock traps should be evaluated carefully and once considered effective and humane, could provide a viable option for vermin control in animal facilities.

Laboratory Investigation

P400 A Comparison of Three Buprenorphine Formulations for Management of Acute Post-Operative Pain in Mice

C Kirkpatrick, J Fremont-Rahl, E Theve, C Brotchie-Fine, A Duttaroy

Comparative Medicine, Novartis Institutes for Biomedical Research, Quincy, MA

Buprenorphine is a widely used opioid analgesic for managing post-operative pain in mice. However, there are different formulations available, and their comparative efficacy remains unclear. This study aimed to compare 3 buprenorphine formulations, buprenorphine – HCL subcutaneous (SC), buprenorphine extended-release (XR) injectable solution SC, and buprenorphine transdermal solution (TD) for the management of post-operative pain in mice. Singly housed female C57BL/6 mice (N=9) were implanted with a carotid artery blood pressure monitor with SC telemetry placement under an IACUC approved protocol, and randomly assigned to receive one of the 3 formulations (N=3 per group). Pain behavior was assessed using the Mouse Grimace Scale, nesting behaviors and body weight trends. The mice were assessed by the same individual for consistency and assigned a numerical score based on the 5 grimace scale criteria, nesting behaviors and percent body weight loss. A score of 0 represented no pain behavior observed and a score of 1 or 2 represented varying degree of pain behavior observed. The lowest score a mouse could receive was 0 and the maximum was 14. In addition to the assigned buprenorphine formulation, all mice received meloxicam 5 mg/kg SC on the day of surgery and for 3 days post-operatively for 96 hours of coverage. The results showed that all three formulations attenuated post-operative pain behaviors assessed by the 3 above methods. The TD formulation was found to be the most effective, resulting in the lowest scores and therefore provided sustained analgesic effect over 96 hours. The buprenorphine-HCL group was used as the control group to compare the two other formulations. The buprenorphine-HCL formulation required multiple doses to maintain adequate pain control, the buprenorphine XR and TD formulations provided more consistent coverage with fewer additional doses needed. In summary, all formulations of buprenorphine were effective at controlling post operative pain in mice, but the transdermal formulation provided the most effective pain control with the least amount of intervention. These results provide valuable insights for in vivo researchers and veterinarians when choosing an appropriate buprenorphine regimen for post-operative pain management in mice.

P401 COVID-19 Pandemic Effects on the Activity Levels of Yucatan Mini Swine

NE Barton, K Cook, J Ref, S Kasui, P Mostafizzi, S Daugherty, JJ Lancaster, KA O’Connell, S Goldman

1College of Medicine, University of Arizona, Lakewood, CO; 2Sarver Heart Center, Tuscon, AZ; 3University Animal Care, University of Arizona, Tucson, AZ

During the COVID-19 pandemic, only essential personnel were allowed to interact with our cardiology research animals, substantially decreasing the animals’ amount of socialization time. There was a noticeable change in the activity patterns of Yucatan mini swine, as recorded by activity monitors. The limited interaction and socialization resulting from pandemic restrictions led to an increase in their activity levels. This unique circumstance provided an opportunity to explore if the level of interaction affected the swine’s activity levels. To investigate this hypothesis, we analyzed the data of Yucatan mini swine already enrolled in two separate cardiac model studies: chronic heart failure (CHF) (N=3) and atrial fibrillation (Afib) (N=3). Each swine was equipped with activity collars to measure their daily activity levels. Three interaction protocols were observed and compared: pre-pandemic, pandemic, and re-entry. These protocols were consistent for both the CHF and Afib models, ensuring uniformity in the assessment. The primary focus was on the swine's “passive activity” levels, measured between the time 10:00 and 14:00, representing isolated activity without staff-induced interaction. Passive activity is the most important timeframe to analyze for this study as it is a representation of the swine’s activity with no interference from staff or feeding time. During staff induced activity, the swine are bathed, given treats, and play with toys and treats, leading to an increase in activity. We want to
analyze the differences in the swines’ isolated activity, hence we only analyze the passive activity time frame for this study. The passive activity time frame is the same for both cardiac models, and the schedule is consistent for each day of the week. For the CHF swine, the average passive activity area under the curve was significantly increased (p=0.005) during the pandemic (57.09 ± 2.9) compared to the pre-pandemic period (47.23 ± 2.42) and the re-entry period (50.44 ± 1.61). There was no significant difference between the pre-pandemic and re-entry periods (p<0.5). The Afib swine displayed similar trends, with higher passive activity during the pandemic compared to pre-pandemic and re-entry. The increase in activity levels during pandemic periods suggests underlying physiological and psychological changes in the swine due to reduced socialization with researchers. This study highlights the importance of enrichment and interaction with research animals, as it sheds light on the impact of humans on animals. Furthermore, it emphasizes the broader implications of the COVID-19 pandemic on research and highlights how variability may impact research study results.

P402 Evaluating Sub-Renal Capsule Cavity Tumor Growth in Immunodeficient NSG-MHC I/II Double Knock-Out Mice

L Bottoms*, B Matran, K Potts, S Khang, EO Sanchez, W Kang, J Yang, M Cheng, J Keck

The Jackson Laboratory, Sacramento, CA

The sub-renal capsule site promotes tumor growth by supplying abundant blood and nutrients. Our study aimed to establish a reliable mouse model using MDA-MB-231-2A-Luc-GFP (MDA-Luc) cells, mixed with Matrigel, implanted under the kidney capsule in NSG-MHC I/II double knock-out (DKO) mice with delayed graft-versus-host disease onset. For the first and second studies, we engrafted 1x10^6 MDA-Luc cells, while the third study examined three different cell concentrations: 5x10^5, 1x10^6, or 2x10^6 MDA-Luc cells. Daily post-operation observations were conducted to ensure the well-being of the mice for six days following surgery. Tumor burden was assessed twice weekly using in vivo imaging system, along with monitoring body weights and clinical signs. On day 17, mice were euthanized, and kidneys were weighed. Tumor shapes and total flux intensity (p/s) were compared among mice engrafted with 1x10^6 cells across the three studies. In the first study, 93% of mice developed tumors growing beyond the capsule, while in the second study, the figure was 20%. All mice in the third study exhibited well-encapsulated tumors. Mice engrafted with different cell concentrations showed dose-dependent tumor growth until day 10. However, on day 14, we observed that group differences diminished, suggesting tumors reached the maximum volume allowed under the renal capsule. Lung metastatic tumors developed in 20% of mice, and 7% developed tumors on the right kidney, leading to a significant decrease in body weight. Our study demonstrated MDA-Luc tumor growth under the renal capsule and observed metastatic patterns in DKO mice. This model offers significant benefits to researchers interested in combining sub-renal capsule tumors with humanization, particularly considering the advantages of using DKO mice. Furthermore, it is crucial to utilize this model development platform specifically for renal cell carcinoma to create orthotopic models that accurately replicate tumor burden and disease progression.

P403 Comparing Tumor Growth and Erosion Rate Following P16MC38 Subcutaneous Versus Mammary Fat Pad Implantation

J Mitchell*, DR Rose, EO Sanchez, L Bottoms, B Matran, K Potts, M Cheng, J Keck

Innovation and product development, The Jackson Laboratory, Sacramento, CA

Murine tumor models are commonly used to understand the biological processes that take place during tumor growth and for the preclinical development of antitumor therapies. The rate of tumor growth, erosion, and ulceration can differ depending on the site of cell implantation and tumor cell line. Here we evaluate tumor growth and erosion rate of mouse colon carcinoma cell line P16MC38 implanted subcutaneously (SC) or in the mammary fat pad (MFP). Forty female 7-week-old C57BL/6J (stock#: 000664) were evaluated for this study. One million MC38 cells were delivered to each mouse, 20 mice were injected subcutaneously, and the other 20 mice were injected in the mammary fat pad. Bodyweights, clinical observations, and tumor caliper measurements were monitored 3 times a week after cell implantation. Mice were euthanized via CO₂ asphyxiation as they reached any of the following humane endpoints – tumor volume over 2000 mm³, bodyweight loss over 20%, tumor ulceration, or if they reached the predetermined study end date of 21 days post cell engraftment. Tumor growth differed significantly between the two injection sites with 90% of SC tumors ulcerated whereas only 10% of MFP tumors ulcerated. Eighty five percent of MFP tumors reached or surpassed 2000 mm³ within 21 days, while only 0.5% of SC tumor reached this same endpoint volume. Our study illustrates the different growth trajectories of tumors cell lines, specifically P16MC38, may have depending on the site of implantation. Understanding the expected tumor growth curve and expected tumor erosion rates for a given tumor cell line and implantation location allows researchers to choose the best implantation site for their study design.

P404 Effects of Exogenous Erythropoietin on Rabbit (Oryctolagus cuniculus) Hematological and Biochemical Parameters

J Levine¹, J Nascimento Seixas¹, JM Ritter¹, A Liew¹, C Tansey²

¹CDC, Atlanta, GA; ²VA, Atlanta, GA

Preventing anemia in rabbits used to feed arthropod colonies and for disease models or studies is vital for preserving their health and wellbeing. Erythropoietin (EPO) is an endogenous hormone produced mainly by the kidneys in direct response to
low pO₂ and thus indirectly to low hemoglobin levels. EPO is commercially available for clinical treatment of anemia in humans, primarily as related to chronic kidney disease or chemotherapy. However, the use of exogenous EPO to prevent anemia in rabbits has not been studied extensively. This study measured CBC and chemistry parameters in apparently healthy New Zealand White rabbits receiving EPO (n = 16) or saline (n = 2) to test the hypothesis that all doses would increase hematocrit and hemoglobin, with greater effects at higher doses and after multiple doses. Rabbits received either a single injection or 3 consecutive injections 24 hours apart of EPO subcutaneously at 150 or 1,000 IU/kg to determine whether these dosages produce a sustained increase in hematocrit. Baseline bloodwork was drawn on Day 0, followed by initial dosing and serial sampling on days 7, 14, 21, and 28. Blood was collected from marginal ear veins. All experimental groups showed an increase in hematocrit after dosing, followed by a gradual decrease towards baseline after day 7. Analysis of CBC and chemistry parameters showed statistically significant elevation in hematocrit after administration of 1,000 IU/kg EPO for 3 consecutive days only at sampling day 7 (mean = 48.75%) compared to controls (mean = 41.75%).<ref>
Histopathology assessed for presence of injection site reactions, cellular changes in hematopoietic organs, and evidence of adverse effects related to EPO dosing, such as thromboembolism. Results showed that EPO is well-tolerated by rabbits at doses between 150 and 1,000 IU/kg, as indicated by lack of histopathologic changes in tissue, including no evidence of injection site reactions. These results indicate that a subcutaneous dosage regimen of 3 consecutive injections of 1,000 IU/kg EPO can increase hematocrit in apparently healthy, nonanemic rabbits for one week.

P405 Comparative Mutational and Gene Expression Analysis in Canine and Human T-cell Lymphoma

MS Metzler¹, H Yang², J Park¹, L Druhan², N Steuerwald², S Suter³

¹CVM Animal Resources, North Carolina State University, Raleigh, NC; ²Levine Cancer Institute, Atrium Health, Charlotte, NC; ³Clinical Sciences, North Carolina State University, Raleigh, NC

Naturally occurring cancer in companion canines recapitulates many attributes of counterpart human neoplasms. Lymphoma is one of the most common cancer types in dogs. Some breeds have a higher risk of lymphoma, and specifically, boxers have approximately a 4- to 10-fold increase in risk of developing T-cell lymphoma (TCL) compared to other breeds. Canine lymphoma shares many clinical and phenotypical similarities with human non-Hodgkin lymphoma, and recent studies have also shown molecular similarities between canine and human B-cell lymphoma. However, it is unclear if canine and human TCL share similar biology, including genetic mutations. For this, we investigated canine TCL lymph node and peripheral blood samples to evaluate common genetic mutations associated with TCL in boxers and compare them with those associated human TCL. An association analysis via logistic regression was performed, and SNPs with p < 0.015 were selected. The Ingenuity Pathway Analysis (IPA) identified the hematologic malignancy as the most statistically significant (p = 0.00005) disease category associated with high-frequency SNPs. High-frequency SNPs were present in 15 genes involved in hematologic malignancy. In addition, canine TCL was associated with high-frequency SNPs in 27 genes, including eight that are known to be involved in human TCL. One of these genes was HDAC4, which serves as a target for HDAC inhibitors used as a therapeutic in humans. We are currently in the process of conducting RNA-seq of canine TCL samples to further validate these findings. These results offer an opportunity to inform and accelerate cancer drug development for both human and veterinary patients.

P406 Bacterial and Infectious Agent Profiling in an Academic Colony of Xenopus laevis

KP Nickerson¹, S Dayanis¹, K Magan¹, A Richardson², K Charron¹, H Wunderlich¹, CL Perkins¹, M Millington²

¹Research and Development, Charles River Laboratories, Wilmington, MA; ²Biological Research Facility, The Francis Crick Institute, London, United Kingdom

To better elucidate diagnostic challenges for uncommon models, a panel of gastrointestinal, liver, spleen, kidney, and toe web skin samples were collected from adult X. laevis. One hundred samples (equal amounts of male and female) were assayed for the presence of Salmonella species, Ranavirus, Pseudocapillaria xenopi, Batrachochytrium (B.) dendrobatidis, Mycobacterium (M.) chelonae, M. marinum, M. gordonae, M. xenopi, M. lindsayi, Chlamydomphila genus, Aeromonas(A.) hydrophila, A. dhakensis, Pseudomonas aeruginosa, and Cryptosporidium species. In the male frogs, only A. hydrophila was detected in the gastrointestinal sample. By contrast, A. hydrophila was detected in the gastrointestinal fraction and B. dendrobatidis in the toe skin fraction of the female frog cohort. Additional environmental samples were also collected to evaluate detection in host-independent samples. In the detritus, tank bottom with algae and sump lich, A. hydrophila was detected. For a more comprehensive look at the commensal bacteria colonizing the gastrointestinal tract, V3-V4 16S rRNA profiling was performed. Overall, similar totals of observed taxa were seen between female and male frogs with female frogs showing more variation in the total number of observed taxa. Abundant levels of Romboutsia sedimentorum and Turicibacter sanguinis were found in all samples. Cetobacterium somerae was found in all frogs but varied wildly in the relative abundance. Lastly, Clostridiodoides difficile was identified in all frog samples. Supporting research model expansion requires constant evaluation and re-evaluation of diagnostic testing and commensal profiling. In this study, we demonstrated detection capability of aquatic infectious agents and insight into the commensal populations of X. laevis. Profiling the microbial community aids in understating of X. laevis health under normal conditions and works to protect husbandry workers from potential zoonotic agents.
P407 Washed up and Wasted: A Promising Alternative for Collection of Influenza Viral Load in the Ferret

TJ Small1, N Blackburn1, KJ Riebe1, A Karlsson2, T Oguin1,3, HF Staats4,1, CS Duckett6,1

1DHVI, Duke University, Durham, NC; 2Regional Bioccontainment Facility, Duke University, Durham, NC; 3School of Medicine, Duke, Durham, NC; 4Department of Pathology, Duke University, Durham, NC

High morbidity and mortality associated with human influenza virus has far-reaching public health and economic impacts. Influenza research frequently requires the use of animal models, with ferrets distinguished among other small research animals by their development of physiological symptoms similar to humans. Ferret sample collection using a saline nasal wash technique provides information on viral load of the upper respiratory tract but requires anesthesia with isoflurane gas that brings behavioral agitation and excessive salivation. Because the use of anesthesia requires fasting prior to anesthetic treatment, it is possible that the required fasting may adversely influence animal weight measurements that are used to evaluate infection-induced morbidity. Considering this, alternative techniques that collect a sufficient viral load for sample testing while avoiding the need for anesthesia and fasting may alleviate isoflurane-related agitation and weight fluctuation. Studies were performed to determine if oral swabs provided a sample suitable for viral load monitoring that did not require anesthesia or fasting. Samples from 16 male ferrets were collected via oral swabs of the soft palate followed by nasal washes. Timepoints at day 2 and day 4 post-infection were tested for viral load using plaque assays. Nasal wash samples on day 2 post-infection (dpi2) returned an average 6.69E+03 Foci-forming units/milliliter (FFU/mL) among the 12 (75%) samples in which virus was detected, with no virus detected in samples gathered at dpi4. In comparison, oral swabs collected on dpi2 showed an average of 1.20E+03 FFU/mL among only 7 (43.8%) detectable samples. At dpi4, oral swabs returned an average 1.20E+03 FFU/mL among only 6 (37.5%) of the animals sampled. These findings indicate a higher titer of detection among a greater percentage of animals through nasal wash at early timepoints, whereas oral swabs offer detection for a longer duration post infection. This suggests an efficacy of oral swabs for detecting viral load at timepoints dpi2 and dpi4, making them a promising alternative collection technique that does not require anesthesia.

P408 Meloxicam Attenuates Heat Hypersensitivity in Red-eared slider Turtles

K Schwartz1, C Pacharinsak1, M Huss1, K Jampachaisri2, SA Felt1

1Stanford, Palo Alto, CA; 2Naresuan University, Muang District, Phitsanulok, Thailand

Meloxicam is one of the most commonly used analgesics for reptiles. However, there is limited efficacy information in red-eared sliders. Here, we evaluated two dosages of meloxicam. We hypothesized whether 1 mg/kg meloxicam attenuated thermal hypersensitivity more effectively than 0.4 mg/kg meloxicam in red-eared sliders. Twenty-one red-eared sliders (female = 17, male = 4; weighing 700 ± 75 g) were randomly assigned to 1 of 3 groups: 1) Saline; 2) 0.4 (Melox-0.4) mg/kg meloxicam; 3) 1 (Melox-1) mg/kg meloxicam. All injections were administered subcutaneously in the right forelimbs. Using the Hargreaves thermal hypersensitivity device, used commonly in rodent pain assays, radiant heat was applied to the plantar surface of both hind limbs and withdrawal response to heat (heat latency) was determined at 0.5, 2, 4, 8, and 24 h post-meloxicam injection. Compared to Saline group, 1) Melox-0.4 attenuated (increased heat latency) hypersensitivity at 0.5, 2, 4 and 8 h; 2) Melox-1 only attenuated hypersensitivity at 8 h. Melox-1 did not attenuate thermal hypersensitivity more effectively than Melox-0.4. This study indicates that 0.4 mg/kg meloxicam effectively attenuates heat hypersensitivity up to 8 h in red-eared sliders.

P409 Extending MS-222 Mediated Anesthesia in Zebrafish (Danio Rerio)

L Bern*, AG Kramer, L Fehrenbach, RA Malbrue

Animal resources core, Nationwide Childrens Hospital, Columbus, OH

The emergence of Zebrafish as a model species took advantage of the species’ adult size, hardiness, time to maturity, relative ease of housing, and genetic similarities to humans to make them an ideal model across many disciplines. However, zebrafish husbandry lacks standardization in many facets and researchers are left desiring some commonplace procedures available to other model organisms. One considerable disadvantage to using aquatic species is the limitation on handling, imaging, and surgery. Historically, tricaine methanesulfonate (MS-222) has been a preferred mode of sedation and anesthesia but extended anesthesia on the surgical plane level has not been examined. To determine if extended sedation of zebrafish can be achieved while being potent enough to maintain plane III of anesthesia while out of water is possible, a trial was conducted. After an initial induction dose of 150 ppm MS-222, reduced concentrations of MS-222 (70, 50, and 30ppm) were run over the gills of the sedated fish. This was done by intubating the sedated fish with a size 22 catheter connected to an IV infusion medical pump containing the reduced dose of MS-222. Fish were checked for response to external stimuli every ten minutes with a gentle tap to the caudal peduncle using sterile forceps followed with a mist of system water. After 30 minutes of continuous MS-222 dosing, fish were moved back to system water to start recovery. Time to induce, intubate, recover, stimuli response, and operculum beats per minute were measured during the trial. Of the 30 fish this trial was ran on, 30 survived the anesthesia and resumed normal behavior. Response to external stimuli was less in the fish receiving 70 ppm maintenance doses, with 30% of individuals responding to the first external stimulation (30 ppm
Atipamezole, an α-2 adrenergic receptor antagonist, reverses alpha-2 agonist anesthetic effects. There is a dearth of information on the physiological effects of these drugs after administration in cynomolgus macaques. Here, we assessed atipamezole’s physiologic effects. We hypothesized subcutaneous atipamezole administration causes post-injection hypotension. Five cynomolgus macaques (3 male, 2 female) were sedated with ketamine (4 mg/kg) and dexmedetomidine (0.02 mg/kg) intramuscularly. Forty-five minutes later, atipamezole (0.5 mg/kg) was given subcutaneously. Anesthetic parameters (heart rate, blood pressure [systolic (SAP), diastolic (DAP), and mean (MAP) blood pressure], body temperature, respiratory rate, and %SpO2) were monitored prior to and every 10 min (through 60 min) post atipamezole injection. While the heart rate was significantly increased from injection at most time points; SAP, DAP and MAP were significantly decreased from injection at 10 minutes. Temperature was also significantly decreased at 10 minutes post injection. No other parameters were significantly altered from injection time. This study indicates subcutaneous atipamezole causes increased heart rate and decreased blood pressure from parameters under sedation with ketamine and dexmedetomidine. These findings are clinically important to raise anesthetist awareness to properly support and treat as needed.

P410 Atipamezole Results in Increased Heart Rate and Decreased Blood Pressure in Cynomolgus Macaques (Macaca fascicularis)

K Schwartz1, M Zhang1, C Pacharinsak1, C Darian-Smith1, K Fisher1, B Franco1, M Huss1, K Jampachaisri2, PE Sharp1

1Stanford, Palo Alto, CA; 2Naresuan University, Phitsanulok, Thailand; 3University of California, Merced, CA

Atipamezole, an α-2 adrenergic receptor antagonist, reverses alpha-2 agonist anesthetic effects. There is a dearth of information on the physiological effects of these drugs after administration in cynomolgus macaques. Here, we assessed atipamezole’s physiologic effects. We hypothesized subcutaneous atipamezole administration causes post-injection hypotension. Five cynomolgus macaques (3 male, 2 female) were sedated with ketamine (4 mg/kg) and dexmedetomidine (0.02 mg/kg) intramuscularly. Forty-five minutes later, atipamezole (0.5 mg/kg) was given subcutaneously. Anesthetic parameters (heart rate, blood pressure [systolic (SAP), diastolic (DAP), and mean (MAP) blood pressure], body temperature, respiratory rate, and %SpO2) were monitored prior to and every 10 min (through 60 min) post atipamezole injection. While the heart rate was significantly increased from injection at most time points; SAP, DAP and MAP were significantly decreased from injection at 10 minutes. Temperature was also significantly decreased at 10 minutes post injection. No other parameters were significantly altered from injection time. This study indicates subcutaneous atipamezole causes increased heart rate and decreased blood pressure from parameters under sedation with ketamine and dexmedetomidine. These findings are clinically important to raise anesthetist awareness to properly support and treat as needed.

P411 African Grass Rats (Arvicanthis niloticus) as a Spontaneous Model of Type II Diabetes and Metabolic Syndrome in Humans

T Simmons1, R Gruenwald2, L Yan3, D Agnew3, M Hoenerhoff4

1University of Michigan, Ann Arbor, MI; 2Oregon State University, Corvallis, OR; 3Michigan State University, Lansing, MI; 4Inotiv, West Lafayette, IN

In humans, metabolic syndrome is characterized by a spectrum of metabolic and cardiovascular diseases that predispose individuals to acute cardiovascular events, type II diabetes, kidney disease and nonalcoholic steatohepatitis, among other conditions. While the incidence of metabolic syndrome varies according to age, gender, ethnicity and socioeconomic status, it currently affects about 20-25% of the human population, a figure that has been increasing. Numerous animal models are used to study metabolic syndrome, including genetically engineered, diet-induced and chemically-induced rodent models; however, these models all lack the natural progression, risk factors and full spectrum of disease recognized in humans. African grass rats are diurnal rodents that develop spontaneous disease mimicking human metabolic syndrome when raised in a laboratory setting on standard rodent chow. To validate and better characterize this model, we collected histomorphologic, clinical chemistry and biomarker data from aged (n = 12) and young (n = 3) African grass rats on standard rodent chow. By as early as 2-3 months of age, grass rats develop gross and histologic lesions, clinical chemistry abnormalities and biomarker expression patterns similar to those seen in humans with this disease. Characteristic pathologic findings included atherosclerotic plaques, chronic progressive nephropathy, pancreatic remodeling and hepatic steatosis. Clinical chemistries revealed hyperglycemia with glucosuria, hypercholesterolemia, elevated triglycerides and elevated liver enzymes. Corresponding with these findings, serum biomarker analysis showed an inverted correlation between insulin and adiponectin. In addition, the animals had decreased serum cortisol and elevated serum ACTH along with adrenal lesions suggestive of hypothalamic-pituitary-adrenal axis disruption and derangement in adrenocortical steroid biosynthesis, an important component of metabolic syndrome in humans that has not previously been reported in African grass rats. These findings demonstrate that African grass rats are a novel and relevant model to study the natural progression of metabolic syndrome in humans, and can provide insight into the pathophysiology of the disease where traditional animal models fall short.

P412 Anesthetic Sensitivity of Mouse C57/BL/6 Substrains to Isoflurane

K Tuohy1, J Marx

University of Pennsylvania, Philadelphia, PA

While genetically very similar, there are many physiological differences between the substrains of C57BL/6 mice having important impacts on the animals. Specifically, differences have been noted between substrains in response to some injectable anesthetic protocols. The goal of this project is to determine the effect of C57BL/6 substrain on isoflurane responsiveness. To test this, the minimum alveolar concentration (MAC) for isoflurane was determined from female and male mice of four substrains of C57BL/6 mice from four different vendors: C57BL/6NTac from Taconic (TAC: n = 6), C57BL/6J mice from The Jackson Laboratory (JAX: n = 6), C57BL/6NHsd mice from Envigo (n = 6), and C57BL/6NClr from Charles River Laboratories (CRL: n = 6). Isoflurane concentrations from 1.7% to 2.2% were tested, using oxygen as the carrier gas. The surgical plane was defined as no motor response to a 300-gram force (Touch Test Device) delivered to the hind paw. MAC for
[Objectives] The SCG/Kj mouse strain has been used as a model of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (Proc Natl Acad Sci USA 90: 3413, 1993). We have searched for serum biomarkers of vasculitis by comparing SCG/Kj and normal controls (C57BL/6) and found apolipoprotein A2 (APOA2) as a candidate biomarker protein (Drug Des Devel Ther 13:555-568, 2019). In the present study, we further searched for serum biomarkers in SCG/Kj mice using two-dimensional electrophoresis (2DE) with fluorescence-labeled proteins (2D-DIGE). We tried to confirm that APOA2 is one of the biomarkers of vasculitis by two-dimensional Western blot (2D-WB). We also tried to find proteins other than APOA2 that are preferentially present in SCG/Kj. [M&M] Serum samples were collected from female mice of both strains at ~13 weeks of age. Albumins and IgGs were removed from the serum samples using Cibacron blue agarose beads and Protein G, respectively. Albumin-IgG-depleted serum proteins from SCG/Kj and C57BL/6 were labeled with orange (IC3-OSu) and red (IC5-Osu) fluorophores, respectively. Two differentially labeled proteins were combined and separated by 2DE under non-reducing conditions (first dimension: isoelectric focusing using IPG strips from pH 3 to 10; second dimension: SDS-PAGE). Fluorescent gel images were captured using an image scanner. Differentially present proteins were searched for by examining a merged image of two pseudocolored images. In addition, spots reacting with anti-Apoa2 antibodies were searched by 2D-WB with unlabeled albumin-IgG-depleted serum proteins from SCG/Kj. [Results] Using 2D-DIGE, we found a spot preferentially present in SCG/Kj (pI: ~6.2; molecular weight: ~26kDa). We also found that anti-APOA2 antibodies bound this spot by 2D-WB. Some other spots were preferentially present in SCG/Kj adjacent to the spot bound by anti-APOA2 antibodies. [Conclusion] APOA2 was found to be a serum biomarker specific for SCG/Kj, confirming the association between APOA2 and vasculitis. We found some other candidate biomarker proteins by 2D-DIGE and will further investigate serum biomarkers for vasculitis.

P413 2D-Analysis of Serum Proteins in a Mouse Model of ANCA-Associated Vasculitis (SCG/Kj Strain)

O Suzuki¹, K Suzuki²

¹Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, , Japan; ²A-CLIP Institute, Chiba city, Japan

P414 Medetomidine/Vatinoxan and Ketamine Effectively Anesthetizes Mice

K Tien¹, ED Alamaw¹, B Franco¹, K Jampachaisri², M Huss¹, C Pacharinsak¹

¹Comparative Medicine , Stanford, San Jose, CA; ²Naresuan University, Phitsanulok, Thailand

Medetomidine/vatinoxan is a novel anesthetic combination used in veterinary medicine. We evaluated the clinical safety and efficacy of three different dosage combinations of medetomidine/vatinoxan (Zenalpha®) and ketamine as compared to xylazine and ketamine for anesthesia of B6 mice. We hypothesized that Zenalpå® with ketamine would provide reliable anesthesia without adverse physiological effects or mortality more consistently than ketamine and xylazine. Ten-week-old male and female C57BL/6 mice were randomly administered 1 of 4 anesthetics subcutaneously (time 0, T0): 1) KX - ketamine (80 mg/kg) and xylazine (8 mg/kg); 2) KZ/2 - ketamine (80 mg/kg) and Zenalpå® (2.0 mg/kg); 3) KZ/2.5 - ketamine (80 mg/kg) and Zenalpå® (2.5 mg/kg); 4) KZ/3 - ketamine (50mg/kg) and Zenalpå® (3.0mg/kg). All mice received buprenorphine-ER (0.5mg/kg), 0.9% NaCl (5 ml/kg), and were maintained with 100%O2 on a heating pad. Buprenorphine-ER was administered to provide balanced anesthesia and replicate the anesthetic regimen recommended for rodents. Following drug administration, we assessed induction by measuring the time to loss of righting reflex and loss of paw withdrawal reflex (PWR). Throughout anesthesia, the physiological parameters monitored included heart rate, respiratory rate, %SpO2, blood pressure, body temperature, and skin color. Atipamezole (1 mg/kg SC) was administered 30 minutes after anesthetic drug administration (T30) and recovery time was monitored through measurement of the time until return of paw withdrawal reflex, righting reflex, standing and ambulation. All mice were monitored for 3 days post anesthesia. Results were: 1) KX did not achieve the complete loss of PWR and 2) all KZ treatments had a loss of paw withdrawal reflex throughout 30 minutes. KZ anesthesia provides more consistent and stable anesthesia as compared to KX in mice. This data suggests that medetomidine/vatinoxan (2.0 and 2.5 mg/kg) and ketamine (80 mg/kg) provides reliable and safe anesthesia in mice.
P415 Effects of Refined Handling on Reproductive Indices of BALB/cJ and CD-1 IGS Mice

GLAS: Yes
MA Hull*, EA Nunamaker*, PS Reynolds*1,2

1Animal Care Services, University of Florida, Gainesville, FL;
2Global Animal Welfare and Training, Charles River Laboratories, Wilmington, MA;
3Statistics in Anesthesiology Research (STAR) Core, Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL;
4Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL

Current methods of mouse handling during cage change procedures can cause stress, potentially compromising animal welfare. A prior study on breeding C57BL/6J mice showed modest increases in pup production and significant reduction in pre-weaning litter losses with tunnel handling compared to lifting mice by the tail with padded forceps. The current study describes results for two randomised controlled trials of handling method on the reproduction of additional mouse strains, BALB/cJ (a low-intermediate fecundity strain), and CD-1 IGS (a high fecundity stock). It was predicted that refined handling would have minimal effects on the high fecundity line because reproductive performance was already maximised, but greater effects on the low fecundity line. Handling method (tunnel versus tail-lift) was randomly allocated to monogamous breeding pairs of mice. Reproductive metrics (litter size at birth and weaning, numbers of litters, litter attrition, between-litter intervals, pup weaning weight, sex ratio) were prospectively monitored for 80 BALB/cJ and 77 CD-1 pairs allowed to breed continuously for 6 months. Neither strain demonstrated operational or statistically significant differences between handling methods for any reproduction metric. Because breeding pairs were relatively undisturbed, only handled during biweekly cage changes, it is likely that mice did not experience sufficient stress either to affect breeding performance or discriminate between handling methods. Nevertheless, previously documented welfare benefits for a more sensitive strain suggest that refined handling should be the default option to reduce background stress.

P416 Progression of Spontaneous Colitis in MDR1a and IL-10 Knockout Mice Housed in either Disposable Mouse or Rat Cages

HK Birkle†1,2, L Schultz*, B Russell*, T Howard*, R Fabrey*1

1Comparative Medicine, Takeda, San Diego, CA;
2Immunology Unit, Takeda, San Diego, CA

Colitis, inflammation of the colon, is caused by a range of factors including infections, autoimmune disorders, and inflammatory bowel disease (IBD). The MDR1a and IL-10 knockout mouse strains are established animal models of colitis and IBD. Environmental factors, including caging and microbiome, can affect the development and severity of these models and cause high variability from one location to another. In this study, cage size and housing density were assessed for their impact on incidence and progression of colitis in these two mouse models of inflammatory bowel disease. Female MDR1a and IL-10 knockout mice were housed in either standard disposable Innovic® IVC mouse cages; 81 in2 floor space (n=5 mice per cage) or standard disposable Innovic® IVC rat cages; 141 in2 floor space (n=10 mice per cage). Enrichment and microbiome (via fecal matter transfer from donor mice caging) were kept consistent for all cages. Nestbuilding scores, weekly photos, body weights, modified Irwin test scores, daily observations and fecal scores were recorded in-life. Study endpoints included body weight, plasma, cytokines/chemokines (IFN-γ, IL-1β, IL-6, KC/GRO, TNF-α), fecal scores (0-3), hemocult scores (0-3), and colon analysis (weight/length ratio, cytokine/chemokine protein expression, gene expression, and histopathology). Results: There was no significant difference in colitis scores or cytokine/chemokine levels between mice housed in mouse or rat cages. Differences were observed in the histological evaluation of the colons. Mice housed in rat cages exhibited increased exploratory behavior and active engagement with their environment. Conclusion: Utilizing rat instead of mouse cages resulted in more positive social activity and a healthier environment for animals. However, both mouse and rat disposable cages resulted in similar progression of spontaneous colitis in MDR1a mice and IL-10 mice.

P417 Decellularized Graft for Repairing Severe Peripheral Nerve Injuries in Sheep

E Contreras1*, S Traserra2, S Bolívar3, N Nieto-Nicolau4, J Jaramillo1, J Forés4, E Jose-Cunilleras6, X Moll6, F García6, I Delgado-Martínez2, O Fariñas4, P López-Chicón6, A Vilarroldona6, P Vergara1,2, E Udina13, X Navarro1,3

1Department of Cell Biology, Physiology and Immunology, and Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra, Spain, Spain;
2Integral Service for Laboratory Animals (SIAL), Faculty of Veterinary, Universitat Autònoma de Barcelona, Bellaterra, Spain, Spain;
3Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Bellaterra, Spain, Spain;
4Barcelona Tissue Bank, Banc de Sang i Teixits, Barcelona, Spain;
5Hand and Peripheral Nerve Unit, Hospital Cliníic i Provincial, Universitat de Barcelona, Barcelona, Spain;
6Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra, Spain

Peripheral nerve injuries resulting in a severe nerve defect require surgical repair. Despite the advances in microsurgery, regeneration of the injured peripheral nerve and the subsequent functional recovery are usually incomplete. The gold standard of repair, the autograft, has several limitations such as limited supply, loss of function of the donor nerve and morbidity in the extraction area. Therefore, new alternatives must be developed, and animal models are still necessary. In this study using the sheep as a model we have assessed nerve regeneration through a long gap nerve injury (5 cm) in the peroneal nerve repaired with a decellularized nerve allograft. A nerve gap 5 cm long
was performed by an autograft (AG) or by a decellularized nerve allograft (DCA). Functional tests were performed once a month, and electrophysiology and echography evaluations at 6.5- and 9-months post-surgery. Nerve grafts were harvested at 9 months for immunohistochemical and morphological analyses. The sheep allowed to perform long-gap nerve injuries with no relevant clinical signs. Besides, all the animals reached the end of the experiment in good conditions. The decellularization protocol eliminated the cells while preserving the extracellular matrix of the nerve. No significant differences were observed in functional tests. Reinnervation of the tibialis anterior muscle occurred in all animals, with some delay in DCA compared to AG groups. Histology showed a preserved fascicular structure in both AG and DCA, however, the number of axons distal to the nerve graft was significantly lower in the DCA compared to the AG group (*p<0.05). The sheep is a useful model for investigating long-gap peripheral nerve injuries and to test new therapeutic alternatives. Although, the decellularized graft assayed supported effective axonal regeneration when used to repair a 5 cm long gap in the sheep.

P418 Evaluation of the Cellular and Humoral Immune Response of a Vaccine Candidate against COVID-19 with Different Alum Adjuvant Formulations

J Vega Rojas, MA Carbajo, M García Gasca, J Mosqueda Gualito, M Velasco Elizondo, R Ruiz Manzano, D Hernández Silva, M Rocha-Solache, R Perez-Serrano, E Zarate, R Castro-Acosta, D Ocampo-Gutierrez

1Neuroscience, Institute for Neurobiology, Universidad Nacional Autónoma de México, Juriquilla, Mexico; 2Immunology and Vaccines Laboratory, Universidad Autónoma de Querétaro, Querétaro, Mexico; 3Laboratorios Alpharma, Mexico City, Mexico

Vaccine development is a major contribution of immunology in the history of humanity against illness. Different platforms are currently being used for the development and delivery of vaccines such as inactivated virus, viral vector(adenovirus), recombinant protein, live-attenuated, and peptide vaccines. Recombinant proteins are the antigens of choice for generating modern vaccines, however, formulating these vaccines with adjuvants is necessary because they are poorly immunogenic. In Mexico, only alum adjuvants are approved for use in human vaccines. To evaluate the humoral and cellular immune response of a recombinant protein (20 and 60µg) with two alum adjuvants (Adju-Phos and Alhydrogel) and PHAD® in 8 different formulations, we inoculated C-57BL/6J female mice (N=56) subcutaneously (seven animals per experimental group). Based on the results, we added two more groups with 60µg of vaccine, Adju-Phos, and without PHAD®. We used an immunization scheme of two doses (Day 0 and 21) and euthanasia performed 10 days after. Antibody titers were determined by indirect ELISA, lymphoproliferation assays, and the determination of cytokine production in serum and cells were performed by flow cytometry, and neutralizing antibodies were assessed by simulated neutralization assays. Higher titers of IgG, IgG2α and IgG1 antibodies were observed in the formulation with 60µg protein and Adju-Phos with PHAD®, as well as specific CD4+ and CD8+ T cells. We also observed the highest levels of TNF-α and IFN-γ with this formulation, in addition to the presence of neutralizing antibodies against the Delta and Omicron variants of SARS-CoV-2. The formulation with 60µg protein and Adju-Phos plus PHAD® was shown to be antigenic and immunogenic in mice vaccinated with a two-dose schedule and had a Th1 rather than a Th2 cell response. These results demonstrate novel findings because we have created this chimeric protein where we included 10 peptides that are present in the RBD of the most predominant COVID variants thus far. A receptor-binding domain (RBD) is a short immunogenic fragment from a virus that docks to a specific receptor to enter cells and thus lead to infection. This offers another platform for vaccine development based on recombinant vaccines with this class of adjuvants.

P419 Subcutaneous Injection of Alfaxalone-Xylazine-Buprenorphine in Mice to Induce a Surgical Plane of Anesthesia and Echocardiographic Evaluation

M Young, S Anderson, J Kelly, L Riffle, SL Spears, E Suess-Radford, J Kalen, J Gulani

1LASP, Frederick National Laboratory for Cancer Research, Rockville, MD; 2Cardiology, CVCA, Leesburg, VA

Alfaxalone has gained increasing popularity as an injectable anesthetic for use in dogs and cats due to its minimal cardiovascular side effects. Data for mice are limited and demonstrate strain- and sex-associated differences in dose response. In a dose-comparison study of alfaxalone-xylazine-buprenorphine (AXB) in Crl:CFW(SW) mice, subcutaneous injection of 50mg/kg alfaxalone-10mg/kg xylazine-0.1mg/kg buprenorphine HCl consistently achieved a surgical plane of anesthesia (loss of toe pinch) for 48.6±4.7 and 60.8±9.6 minutes in females and males, respectively. The same dose and route of AXB induced surgical plane of anesthesia in C57Bl/6NCrl (females: 43.4±14.1 min, males: 51.1±10.7 min), Ncr-Foxn1nu (females: 75.8±34 min, males: 80.3±40.4 min) and NOD.Cg-Pkd1ScidIl2rgtm1Wjl/SzJCr (females: 68.3±27.9 min, males: 65.7±12.1 min) mice. No significant difference in duration of surgical plane of anesthesia was seen between male and female Crl:CFW(SW), C57Bl/6NCrl, Ncr-Foxn1nu, and NOD.Cg-Pkd1ScidIl2rgtm1Wjl/SzJCr mice (two-sided unpaired Wilcoxon rank test, p >0.05). In an echocardiography study (n=5 per group) of Crl:CFW(SW) mice under AXB anesthesia compared to 100 mg/kg ketamine-10mg/kg xylazine (KX), AXB induced less bradycardia (295.4±29 bpm) compared to 100 mg/kg ketamine-10mg/kg xylazine (KX) (185.8±38.9 bpm) group (p=0.0012). There was no significant difference (p>0.05) in cardiac output (CO), ejection fraction (EF), end-diastolic volume (V;d), end-systolic volume (V;s), or fractional shortening (FS) between the two anesthetic groups. These results suggest that subcutaneous administration of 50mg/kg alfaxalone-10 mg/kg xylazine- 0.1mg/kg buprenorphine HCl is a viable anesthetic option to induce a surgical plane of anesthesia in Crl:CFW(SW), C57Bl/6NCrl, Ncr-Foxn1nu, and NOD.Cg-Pkd1ScidIl2rgtm1Wjl/SzJCr mice,
Syrian hamsters are a key animal model of SARS-CoV-2 and other respiratory viruses and are useful for the evaluation of associated medical countermeasures. Delivery of an infectious agent or intervention to the respiratory tract mirrors natural routes of exposure and allows for the evaluation of clinically relevant therapeutic administration. The data to support instillation or inoculation volumes are important both for optimal experimental design and to minimize or avoid effects of diluent alone, which may compromise both data interpretation and animal welfare. The purpose of this study was to investigate four intranasal (IN) instillation volumes in hamsters (50, 100, 200, or 400 μL). Groups of sixteen 5-to-6-week old Syrian hamsters (8 male, 8 female) were instilled intranasally (IN) under isoflurane anesthesia, with 50, 100, 200 or 400 μL of DMEM, divided bilaterally between the nares. The animals were monitored daily, and a subset were serially euthanized at one of four pre-determined time-points (1, 3, 7, and 14 days post-instillation). Weight, temperature, oxygen saturation, CBC, radiographs, and respiratory tissue histopathology were assessed to determine changes associated with instillation volume alone. With all the delivery volumes, we found no notable differences between instilled and non-instilled controls in all of the parameters assessed, except for histopathology. In the animals instilled with 200 or 400 L, inflammation associated with foreign material was detected in the lower respiratory tract indicating that higher volumes may result in aspiration of nasal and/or oropharyngeal material in a subset of animals, resulting in IN instillation-associated histopathology. Overall, we have shown that studies in Syrian hamsters should limit instillation volumes to 100μL or less to mitigate the volume-associated histological changes.

P420 Volume-Associated Clinical and Histopathological Effects of Intranasal Instillation in Syrian Hamsters: Considerations for Infection and Therapeutic Studies

C Forero¹, JM Ritter², J Nascimento Seixas², JD Coleman-McCray³, M Brake¹, JA Condrey¹, C Tansey³, SR Welch³, SC Genzer¹, JR Spengler⁴

¹Comparative Medicine Branch, Centers for Disease Control and Prevention, Atlanta, GA; ²Infectious Diseases Pathology Branch, Centers for Disease Control and Prevention, Atlanta, GA; ³Veteran's Affairs, Atlanta, GA; ⁴Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA

P421 Development of a Delayed-Type Hypersensitivity Model for Assessing Immunomodulatory Effects in Rhesus Macaques

W Smallridge*, B Vega

Laboratory Animal Resources, MRL, Merck & Co., West Point, PA

Delayed-type hypersensitivity (DTH) is a T cell-mediated response that can be used to assess the immunomodulatory effects of drugs in nonclinical species. Historically, DTH modeling has commonly been conducted in rodents and has shown sensitivity to various immunosuppressive agents. With more biologics being pursued as therapeutic candidates, nonhuman primates (NHPs) are often the only relevant species. In the present study, we established an NHP-based intradermal (ID) challenge DTH model. Effects of two antigens, tetanus toxoid (TT) or keyhole limpet hemocyanin (KLH) were evaluated. Our results showed that although a robust anti-TT antibody response was detected in serum, ID challenge of an available TT vaccine with adjuvant resulted in acute inflammation characterized by local neutrophil infiltration. In contrast, KLH provided opportunities to optimize the antigen and adjuvant concentrations. All 10 animals demonstrated a robust anti-KLH serum antibody response. Histopathological analysis of ID challenge sites revealed signatures of a DTH reaction most prominently demonstrated by an infiltration of CD3+ and CD68+ cells. An anti-inflammatory agent, dexamethasone (1mg/kg), was able to reduce the DTH response, indicated by decreased number of CD3+ and CD68+ cells. Additionally, the use of laser speckle contrast imaging (LSCI) was developed to assess dermal blood flow as a method to quantify DTH responses. Preliminary results from LSCI evaluation detected a significant increase in dermal blood flow at ID challenge sites, which was attenuated with dexamethasone pretreatment. A correlation between dermal blood flow and histologic findings indicates that LSCI could be utilized as a non-invasion method for assessing DTH responses in the presence of immunomodulatory molecules. Gene expression profiling of skin biopsies to determine DTH-induced transcription was also evaluated as a novel assessment tool. Our results show a KLH-based DTH model in NHPs can readily detect drug induced immunosuppressive effects. Novel technologies including LSCI, and gene transcription provided a quantitative assessment of DTH responses which can increase the sensitivity and specificity of the model for evaluating immunomodulatory effects of biologics during nonclinical development.
P422 Non-invasive In Vivo Imaging of Reactive Oxygen Species (ROS) Activation in Neuroinflammation and Pain

M Abraham1, E Price2, J Kahn2, D Zwilling2, M Stenslik1, I Bennacef3, A Gleason1, C Miller1

1Translational Imaging, Merck & Co., Inc., West Point, PA; 2Sensory Biology and Neuropharmacology, Merck & Co., Inc., West Point, PA

Reactive oxygen species (ROS), such as superoxide, are a class of highly reactive oxygen-containing molecules that play an important role under normal physiological conditions. However, the overproduction of ROS leads to oxidative stress and neuronal injury, hallmarks of several neurodegenerative diseases including but not limited to Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS). In addition, the overproduction of ROS is thought to contribute to peripheral nerve injury-associated neuropathic pain. Therefore, non-invasive ROS imaging techniques would allow us to evaluate potential therapeutic candidates targeting the overproduction of ROS. For this study, dihydroethidium (DHE), a blood-brain-barrier (BBB) penetrant fluorescent probe used to measure superoxide levels, was utilized for imaging. To image brain ROS activity in C57BL/6 mice (female, 5 mice per group) following a lipopolysaccharide (LPS, 5 mg/kg, intraperitoneal [IP]) challenge, DHE (20 mg/kg, IP) was injected as an imaging substrate (excitation 500-530 nm/emission 590-620 nm). DHE fluorescence signal from the brain at 4hr post-LPS injection was significantly higher in the LPS group than in the saline-treated group. We then examined Luminol (a non-BBB penetrant probe) to estimate the peripheral ROS activity in C57BL/6 mice (male, 10 mice per group) hind paw following saline-mineral oil control or Complete Freund’s Adjuvant (CFA, 0.5 mg/ml, 25 µl in the right hind paw), a model of neuropathic pain. For this study, Luminol (200 mg/kg, subcutaneous)-based bioluminescence imaging (BLI) was performed following CFA administration. Luminol-BLI provided a non-invasive, specific, and highly sensitive optical readout of phagocyte-mediated myeloperoxidase (MPO) activity in vivo. CFA administration in the hind paw resulted in a significantly higher average Luminol signal at the injection site than in the control group. In summary, DHE and Luminol-based longitudinal non-invasive in vivo imaging studies can be used to evaluate the efficacy of compounds targeting oxidative stress without the need of euthanizing animals at multiple time points.

P423 Comparison of Novel and Traditional Bleeding Techniques in Neonatal and Juvenile Mice

R Prentiss1, K Lamont1, B Bollinger1, K Gaston1, C Fletcher1, 2, h atkins1, IA Galex1, 2

1Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC; 2Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC

Terminal blood collection is common in toxicology, developmental, and immunology studies involving neonatal and juvenile mice. Implementation of non-terminal blood collection techniques, such as the submental bleed technique that has been recently described for adult mice, offer opportunities to reduce animal numbers and refine current methods. To the authors’ knowledge, the submental bleed technique has not been described in neonatal or juvenile mice. This study compared submental bleeding techniques with another commonly used method, submandibular venipuncture, in neonatal and juvenile mice. CD1 mice, ages 7, 14, 21, and 28 days, were randomized into submental (N=16), submandibular(N=16), or control (N=8) groups based on sex, with equal numbers of each sex represented. Each mouse was weighed, restrained via manual scruffing, bled per their group (or only restrained in the case of control animals) and then decapitated for terminal blood collection. A subset of mice (N=8) with two representatives from each age group were bled with one of the techniques, and tissue was collected after 48 hours for representative histopathology samples to determine gross or histopathologic evidence of trauma. Serum corticosterone and blood collection volume were measured. Preliminary results show a significant difference in the volume of blood collected on days 14 and 28, with the submandibular technique yielding a significantly higher blood volume collected (approximately 18uL more on days 14 and 17uL more on days 28). No significant differences were seen in corticosterone levels between the two bleeding techniques across all ages and sexes. Trauma was seen histologically for all samples except day 21 submandibular bleed. We conclude that the submental bleed technique can be a viable non-terminal blood collection method in neonatal and juvenile mice, especially when smaller amounts of blood are needed. Future studies may further evaluate parameters pertaining to animal welfare and blood sample quality.

P424 Novel Bedding: Does Hemp Material Have the Physical and Chemical Properties Appropriate for Housing Laboratory Animals?

J Locklear*, TE Whiteside, DM Kurtz

QAL, NIEHS, Research Triangle Park, NC

There are various types of rodent bedding materials used to house laboratory animals. Types of bedding material will affect the animal’s microenvironment and potentially alter physiological responses. Rodent bedding should supply a
comfortable environment for animals and personnel working animal rooms. Hemp, Cannabis botanical, is a rapid growing plant whose fiber, hurds, seeds, flowers and leaves have been used for multiple purposes for years. Hemp hurds are ligneous woody tissues which are used for animal bedding and construction. Hemp bedding has been used for agriculture species for years primarily due to its high absorptive capacity. The objective of this study is to evaluate properties of hemp bedding products from the USA, Netherlands and France for microbial, pesticide residues, heavy metals, aflatoxin, endotoxin, cannabinoid, dust content and moisture to see if it is a suitable bedding option in the laboratory animal industry. Assays were conducted using mass spectrometry for cannabinoids, aflatoxins, pesticides, and heavy metals; kinetic method for endotoxin; Mettler Toledo analyzer for moisture; ROTAP shaker for dust content; and conventional microbiology testing for microbes. All samples were negative or at acceptable levels for cannabinoids, aflatoxin, pesticides and heavy metals. The hemp bedding samples met contract lab specifications for moisture, dust content and pathogen microbial screen and were comparable to our hardwood animal bedding levels. Total aerobic bacteria (≥ 1.3 × 10⁸ cfu/g), coliform (1,000 – 6,700 cfu/g) and endotoxin levels (8,496 – 336,976 EU/g) yielded high readings. Appropriate sterilization of hemp bedding via steam autoclave or irradiation will eliminate live microbial content; however, endotoxin levels are resistant to sterilization processes. Hemp bedding’s high levels of endotoxin makes it less than an optimal rodent bedding for conducting respiratory and immunological studies. Absorptive capabilities and dust content of hemp bedding make it a good candidate for use with rodents; however, additional testing is needed.

P425 Interaction of Juvenile Stocking Density and Larval Diet on Adult Size and Sex Differentiation in the Laboratory Zebrafish (Danio rerio).

C Sparkman*, J Darling, D Kennedy, L Schur, H Engle, E Liechty

Center for Comparative Medicine, Northwestern University, Chicago, IL

Zebrafish are an increasingly utilized research model. Despite evidence suggesting environment is a significant driver of behavioral and morphologic phenotype, consistent husbandry standards have yet to be established. For example, tank stocking density impacts growth, reproductive efficiency, and larval survival. Yet there is considerable variation between institutional standards on age-specific stocking density. Such standards have been difficult to establish in part due to interactions with other variables such as diet. In practice, larval and juvenile zebrafish are often held at higher average stocking densities (10-40 fish/L) than adult fish (5-10 fish/L), with reduction in stocking occurring at various time points between 15 and 90 days post-fertilization (dpf). To better characterize the impact of juvenile stocking density on growth potential, we assessed the interaction between age, diet, and 30 dpf stocking density on adult standard length, weight, sex, and survival.

Wildtype AB zebrafish were housed and fed in one of three larval care paradigms: rotifers without flow, rotifers with flow, or manufactured diet. Tanks were stocked at 10 fish/L until 30 dpf at which time a subset of each larval care group was transitioned to 5 fish/L or maintained at 10 fish/L. For all larval care paradigms, fish housed at 5 fish/L were significantly larger (mass p<0.0001; length p<0.0001) at 90 dpf than those housed at 10 fish/L. No significant difference in 30-90 dpf survival or sex differentiation was observed. Collectively, these data suggest reduction in housing density to 5 fish/L at 30 dpf is correlated with increased size of adult fish.

P426 Effectiveness of Three Injectable Anesthetics in Sedating Pacific Bluefin Tuna

K Schwartz*, C Pacharinsak, B Block, C Morrill, SA Felt

Stanford, Palo Alto, CA

The sole FDA approved anesthetic agent for tuna is MS-222, a compound added to water requiring full immersion. Immersive anesthetics, however, are not a viable option for larger tuna due to the volume of water required. Here, we trialed the use of alternative injectable anesthetics to sedate three 50-kg Pacific bluefin tuna. Three injectable anesthetics included tiletamine/zolazepam (T), tiletamine/zolazepam/ketamine/xylazine (TKX), and dexmedetomidine/ketamine/xylazine (DKX). Each fish was individually caught in a sling within their home tank and injected with one of the three anesthetics intramuscularly. The first fish was sedated with T (23.6 mg/kg). The second fish was sedated with TKX [T (4.4 mg/kg), K (17.6 mg/kg), X (6.2 mg/kg)]. The third fish was sedated with DKX [D (0.07 mg/kg), K (37.8 mg/kg), X (11.1 mg/kg)]. Sedation criteria were documented as time to: disorientation (swimming in the opposite direction of the school and slower swimming pattern), loss of righting reflex (inability to orienting in an upright position), and immobility (in-capable of moving). Other clinical behavioral observation (hyperexcitation) was also monitored. The T and DKX fish had the shortest time to disorientation (2 min and 1 min, respectively) and the TKX had the longest time to disorientation (9 min). All 3 tuna showed similar time to loss of righting reflex (31.7± 3.3 min). The TKX fish had the shortest time to immobility (36 min), followed by the DKX fish (47 min) and the T fish (114 min) had the longest time to immobility. The TKX, but not T and DKX, tuna showed significant hyperexcitation. There were no other abnormal clinical behaviors observed. These data suggest that: 1) T, TKX, or DKX effectively sedates Pacific bluefin tuna; 2) DKX and T cause the least hyperexcitation.

ya alamneh*, R Abu-Talib, C Czintos, w Su, D Zurawski, S Noble, I Soojhawon

WID, WRAIR, Silver Spring, MD

The cyclophosphamide (CP)-treated acute Klebsiella pneumoniae (Kp) lung infection mouse survival model is commonly used to evaluate efficacy of antibiotics and biological agents in drug development. However, because CP can cause neutropenia and suppress the immune system, CP-treated mouse survival models are not suitable for evaluating certain biological agents such as monoclonal antibodies and bacteriophages that need neutrophils and a healthy immune system to facilitate clearance of bacteria. For validation, a Kp lung infection Balc/c 6 weeks age mouse survival model without CP was developed. First, four doses of a hypervirulent Kp43816 strain, 1.0 x 10^7, 1.0 x 10^6, 1.0 x 10^5 and 1.0 x 10^4 CFU, were inoculated into the mouse’s lung through nose nostril, causing 100% death (humanely euthanized according to clinical scores) on post-infected day 3, 4, 3 and 2, respectively. This proves that acute infection is possible without the use of CP. Second, to prove the model can be used to test therapeutics, a positive control experiment was conducted using polymyxin B. Twenty mice were then randomly divided into four groups and injected with Kp43816. Group A was inoculated with 1.0 x 10^7 CFU and Group B with 1.0 x 10^6 CFU both groups were treated with saline. Group C was inoculated with 1.0 x 10^5 CFU and Group D with 1.0 x 10^4 CFU. Groups C and D were treated with polymyxin B (5.0 mg/kg) BID I.P. (twice a day) for three days. The survival rates for Groups A and B were 0%, while Group C was 80%, and group D was 60%, demonstrating that polymyxin B significantly increased mice survival rates (p < 0.05). In conclusion, we successfully developed an acute K. pneumoniae lung infection mice survival model for evaluating therapeutics without the use of CP.

P428 Examining Inflammatory Signaling in Astrocytes as a Key Modulator of the Neurovirulence of Western Equine Encephalitis Virus in a Novel Mouse Model of Parkinson’s Disease

S Thomas*, S Rocha, A Latham, CP McDermott, RB Tjalkens

CSU, Fort Collins, CO

Parkinson’s disease (PD) is the second-most common neurodegenerative disease after Alzheimer’s disease, constituting over 10 million ongoing cases in humans worldwide. Neuroinvasive infections with mosquito-borne alphaviruses such as Western equine encephalitis virus (WEEV) induce a post-encephalitic parkinsonism with neurologic sequelae that closely resemble PD due to persistent neuroinflammation. Although the standard for these studies has been intranasal inoculation with WEEV, footpad injection more closely resembles natural mosquito infection and activates the same brain regions as PD by entering the CNS through circumventricular organs (CVOs) where the blood-brain barrier is naturally absent. In addition, transgenic mice lacking NFkB inflammatory signaling in astrocytes were shown to have neuronal loss and reduced gliosis, suggesting that astrocytes play a critical role in initiating PD-like pathology following WEEV infection. In this pilot study, we used a Cre-LoxP system of gene deletion to generate an astrocyte-specific IKK2 knockout model using tamoxifen-inducible Cre ERT2-recombinase mice. Three male and three female Aldh111-Cre/ERT2 BAC transgenic mice were administered 75mg/kg tamoxifen intraperitoneal every 24 hours for 5 consecutive days to induce this genetic knockout and immunohistochemistry was performed on whole brain samples. Astrocyte-specific deletion of IKK2 in vivo was demonstrated by co-immunofluorescence labeling of paraffin-embedded brain sections for GFAP/IKK2+ astrocytes, and for IBA1+/IKK2- microglia. Future studies will utilize this mouse model to interrogate the neuroinflammatory and neurodegenerative consequences of systemic inoculation with WEEV in astrocyte-specific conditional IKK2 knockout mice.

P429 Fecal Screening for SARS-CoV-2 from Urban White-Tailed Deer (Odocoileus virginianus) on the NIH and NIEHS Campuses

MD Johnston*, DM Kurtz†, ML Thomas

1Comparative Medicine Branch, National Institute of Environmental Health Science, Research Triangle Park, NC; 2Division of Veterinary Resources, National Institutes of Health, Bethesda, MD

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been the largest worldwide pandemic in over 100 years infecting more than 700 million people. As with most emerging infectious diseases, SARS-CoV-2 is believed to have originated in animals and spread to humans. During the course of this pandemic, multiple domestic, wild and captive animal species were found to be infected with SARS-CoV-2 and likely the result of “reverse zoonosis” passing from humans to animals. Many health officials were concerned that these susceptible animal species could act as a viral reservoir for continued human infections. Beginning in 2021, reports emerged suggesting a high percentage SARS-CoV-2 infections in white-tailed deer (Odocoileus virginianus) across the U.S.A. White-tailed deer are ubiquitous throughout the US and often live in close proximity to urban populations. Both the National Institutes of Health (NIH) in Bethesda, MD and the National Institute of Environmental Health Sciences, in Research Triangle Park, NC, reside within large urban populations and also have a significant wild, white-tailed deer population on their campuses. We collected 50, separate fecal droppings from white-tailed deer located on both campuses and tested them via PCR for the presence of SARS-CoV-2. We were unable to detect SARS-CoV-2 in any of the samples collected for testing. Based on our results, the populations of white-tailed deer on either NIH campus were not infected with SARS-CoV-2 and do not pose a risk to the human population.
P430 Carprofen Attenuates Postoperative Hypersensitivity after Plantar Incision in Immunodeficient NSG Mice

ED Alamaw1, K Casey1, K Tien1, B Franco1, RM Cotton1, CM Nagamine1, PE Sharp2, K Jampachaisri1, C Pacharinsak1, M Huss1

1Comparative Medicine, Stanford University, Stanford, CA; 2Chair, Department of Liberal Studies, California State University, LA, CA; 3Department of Mathematics, Faculty of Science Naresuan University, Phitsanulok, Thailand

The immunodeficient NSG mouse was recently reported to have continued postoperative hypersensitivity after buprenorphine administration. Here, we investigated the efficacy of Carprofen, a nonsteroidal anti-inflammatory agent, for attenuating postoperative hypersensitivity in NSG mice. The aim of this study was to assess whether a high dose of carprofen (25 and 50 mg/kg) would attenuate postoperative hypersensitivity more effectively than the commonly recommended dose (5 mg/kg) for an incisional pain model in NSG mice. Male and female NSG mice (n = 40) were randomly assigned to 1 of 4 groups and received subcutaneous injections once a day for 2 days: Saline (1 ml/kg), 5 mg/kg carprofen (Car5); 25 mg/kg carprofen (Car25); and 50 mg/kg carprofen (Car50). Mechanical and thermal hypersensitivity assessments were performed 24 h prior to surgery and at 4, 24, and 48 h afterward. Plasma carprofen concentration (n = 56) was measured on D0 (at 2, 4, 12, 23 h), D1, and D2 after the first, second, and third doses, respectively. Fecal occult blood tests (n=15) were performed daily and following euthanasia, tissue was collected for histopathological examination. The Saline group exhibited both mechanical and thermal hypersensitivity throughout the study. Car5 did not attenuate mechanical or thermal hypersensitivity at any time point. Car50 attenuated thermal hypersensitivity only on D1. Carp25 effectively attenuated mechanical and thermal (except at 4 h) hypersensitivity. Positive fecal occult blood was detected in Car25 (25%) at 48 and 72 h, no other samples tested positive. Histopathological abnormalities were observed only in Carp50 mice [gastric ulceration (50%), ulcerative enteritis with villus blunting and fusion (25%) and renal lesions (75%)]. Plasma carprofen concentration consistently maintained in all groups for 12 h. Our results indicate that Car25 attenuated postoperative mechanical and thermal hypersensitivity more effectively than Car5 or Car50 for an incisional pain model in NSG mice.

P431 High-dose Carprofen as a Postoperative Analgesic Therapy in Female CD1 Mice is Inadequate

H Weaver1, B McKenna1, J Kim2, LV Kendall1,2

1Laboratory Animal Resources, Colorado State University, Fort Collins, CO; 2Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO; 3School of Medicine, University of Louisville, Louisville, KY

The minimization of pain in laboratory mice is a scientific and ethical necessity since pain can influence experimental results. Carprofen is a common NSAID used for postoperative pain management; however, the standard dosage of 5 mg/kg may not provide sufficient analgesia. We hypothesized that a higher dose of carprofen will decrease pain-associated behaviors. Female CD1 Mice received an ovariectomy or isoflurane anesthesia-only sham surgery, then were given high- (10 mg/kg), low-dose (5 mg/kg), or saline subcutaneously every 12 hours (n= 10 per treatment) starting right before surgery. The behaviors indicative of pain: orbital tightening, arched posture, rearing, and grooming were assessed by the same two trained observers cage-side prior to surgery, with the addition of wound licking and at 4, 8, 12, 24, and 48 hours postoperatively. All surgery groups had significantly increased scores in orbital tightening, arched posture, and wound licking compared to the anesthesia-only groups at 4, 8, 12, and 24 hours postoperatively. The surgery groups treated with carprofen had significantly lowered arched posture scores than the surgery group treated with saline only at the 8 hours postoperative timepoint. No significant differences were found between treatment groups for rearing and grooming behaviors at any timepoints. These results indicate that 5 and 10 mg/kg subcutaneous carprofen doses every 12 hours do not provide sufficient analgesia to mitigate postoperative pain in female CD1 mice.

P432 Two Sentinel-Free Soiled Bedding Matrix Exposure Methods Outperform Soiled Bedding Sentinels for Mouse Colony Health Monitoring

M Tu-Wood1, S Hansen2, ML Hart2, RS Livingston3, KM Donovan3

1Comparative Medicine Program, University of Missouri, Columbia, MO; 2IDEXX Bioanalytics, Columbia, MO; 3St. Louis University School of Medicine, St. Louis, MO

Soiled bedding sentinels (SBS) for rodent colony health monitoring have limitations including inconsistent disease detection, use of animals and are costly and labor intensive. Sentinel-Free Soiled Bedding (SFSB) health monitoring is an alternative that overcomes the limitations of SBS by using PCR testing of sample collection matrices exposed to soiled bedding. The purpose of this study was to compare two SFSB in-cage matrix exposure methods to soiled bedding sentinels to detect pathogens in a colony of mice housed in Animal Care Systems Optimouse cages over a 12-week monitoring period.
suggest a fundamental difference in glucose metabolism plays an essential role in VO2 capacity. In conclusion, SPF and GF mice demonstrate divergent gains in aerobic capacity following exercise training, which can be quantified by real-time measurement of respiratory rate using a forced treadmill test.

P434 Optimizing the Glass Bead Sterilization Protocol Focusing on Removal of Organic and Bacterial Intraoperative Contamination

K Lewy*, J Bova, R Rose, TV Vemulpall

Comparative Medicine, Texas A&M, Bryan, TX

No standard glass bead sterilization (GBS) protocol exists to effectively sterilize rodent surgical tools after heavy bacterial exposure, (e.g., cecal contamination). Various detergents are used to remove gross debris from surgical tools. We hypothesized that adding a detergent to GBS protocols will enhance removal of gross debris and potential bacterial nidi for intraoperative patient contamination. This hypothesis was tested by adding either a multi-enzyme detergent, neutral pH detergent, or chlorohexidine scrub step before GBS of forceps or needle drivers exposed to cecal contents. We modeled intraoperative contamination by humanely euthanizing mice (mixed sex, predominantly C57/BL6) via CO2 inhalation and exposing sets of forceps and needle drivers to the cecal contents for 3 minutes. Immediately after, tools were wiped several times with a paper towel. The contaminated tips were soaked in either a multi-enzyme or neutral pH detergent (T = 5min), chlorohexidine scrub (T = 2 min), or no pretreatment solution (control). Tools (all treatment groups) were then scrubbed using a clean brush. The control tools were briefly soaked in saline before scrubbing. After rinsing with sterile water, all tools were exposed to GBS for 60 seconds at 500 °F. Tool sets were then swabbed for bacterial culturing. Swabs were plated onto either sheep blood agar (n=23) or chocolate agar (n=20) for aerobic culturing or Brucella agar (n=20) for anaerobic culturing. A subset of tools was sampled to determine if organic material was present after treatment using an ATP luminometer (n=21). To date, no growth has been found on any sheep blood or Brucella agar plates. Two out of twenty forceps in the control group yielded growth on chocolate agar, but all other tools from all groups did not. The neutral pH detergent group yielded no test-positive tools via luminometer, while the multienzyme detergent group yielded a single test-positive tool. The number of tools testing ATP-positive in the chlorhexidine and control groups were significantly higher (n = 4 for each). Though each group represents a significant improvement of GBS protocols, both detergent groups were superior for their lack of positive bacterial culturing and limited ATP-swabbing positive results when compared to GBS alone.

One matrix was shaken in pooled dirty bedding, while the second matrix type was exposed to all soiled cages on the rack using a scraping method around the perimeter and into the center of the cage. This strategy was used to evaluate SFSB performance in four racks located in three different rooms. We hypothesized that matrix agitated in an SFSB cage and matrix exposed to all soiled cages would detect Rodentibacter spp., Helicobacter spp., and murine norovirus (MNV) as well or better than SBS. Prior to study initiation, colony mice were confirmed positive by PCR for all three pathogens at varying prevalence rates. Realtime PCR testing on technical triplicates of the two matrix exposure methods were compared to SBS in the four different colonies. All SBS failed to detect Rodentibacter and Helicobacter, and 25% failed to detect MNV by PCR and serology. Alternatively, agitated and all-cage-exposed matrices detected MNV, Rodentibacter spp., and Helicobacter spp. with few exceptions when monitoring low prevalence colonies. Exposing the matrix to all cages had negative ergonomic, workflow, and labor challenges compared to the agitated matrix SFSB method. Thus, agitating the matrix in composite soiled bedding at two-week intervals provided the most efficient and user-friendly method while providing superior pathogen detection compared to SBS.

P433 Different Effect of Exercise on Metabolic Profile in SPF and GF Mice

E Ko*, J Kim, J Seong, H Kim, Y Kim, Y Kim, H Kim, J Baek, S Jang

Microbiota has been known to have a significant impact on metabolic turnover in humans and animal models. Fecal microbiota transplantation has been shown to transmit exercise effects. However, the full extent of exercise effects under germ-free (GF) conditions has not been fully elucidated. Metabolic profiles were determined through a forced treadmill test after 4 weeks of wheel running training in 8-week-old male SPF(Specific Pathogen-Free) and GF C57BL/6N mice. To assess improvements in exercise performance, respiratory capacity was measured using an exhaustion test in a chamber equipped with a treadmill. Measurements such as oxygen consumption, carbon dioxide consumption, energy expenditure (EE), oxygen/carbon expenditure ratio (RER), heat production, and activity were recorded. During the test, the VO2 (Oxygen uptake) peak of trained SPF mice was significantly higher compared to untrained SPF mice and both untrained and trained GF mice. Additionally, the VO2 peak of GF mice did not improve after training. Furthermore, throughout the treadmill test and recovery period, trained SPF mice exhibited a significant increase in VO2 levels, whereas GF mice consistently showed low VO2 levels during running(21min) and recovery(20min). The higher levels of blood lactate in GF mice compared to SPF mice during training, along with the elevated VO2 levels in trained SPF mice compared to GF mice, suggest a fundamental difference in glucose metabolism between the two groups. Additionally, in an additional co-breeding experiment, it was observed that the lower oxygen uptake in GF mice recovered to the same level as SPF mice during the fatigue test. These findings indicate that microbiota plays an essential role in VO2 capacity. In conclusion, SPF and GF mice demonstrate divergent gains in aerobic capacity following exercise training, which can be quantified by real-time measurement of respiratory rate using a forced treadmill test.

kmcp, Seoul, Korea (the Republic of)

K Lewy*, J Kim, J Seong, H Kim, Y Kim, Y Kim, H Kim, J Baek, S Jang

Microbiota has been known to have a significant impact on metabolic turnover in humans and animal models. Fecal microbiota transplantation has been shown to transmit exercise effects. However, the full extent of exercise effects under germ-free (GF) conditions has not been fully elucidated. Metabolic profiles were determined through a forced treadmill test after 4 weeks of wheel running training in 8-week-old male SPF(Specific Pathogen-Free) and GF C57BL/6N mice. To assess improvements in exercise performance, respiratory capacity was measured using an exhaustion test in a chamber equipped with a treadmill. Measurements such as oxygen consumption, carbon dioxide consumption, energy expenditure (EE), oxygen/carbon expenditure ratio (RER), heat production, and activity were recorded. During the test, the VO2 (Oxygen uptake) peak of trained SPF mice was significantly higher compared to untrained SPF mice and both untrained and trained GF mice. Additionally, the VO2 peak of GF mice did not improve after training. Furthermore, throughout the treadmill test and recovery period, trained SPF mice exhibited a significant increase in VO2 levels, whereas GF mice consistently showed low VO2 levels during running(21min) and recovery(20min). The higher levels of blood lactate in GF mice compared to SPF mice during training, along with the elevated VO2 levels in trained SPF mice compared to GF mice, suggest a fundamental difference in glucose metabolism between the two groups. Additionally, in an additional co-breeding experiment, it was observed that the lower oxygen uptake in GF mice recovered to the same level as SPF mice during the fatigue test. These findings indicate that microbiota plays an essential role in VO2 capacity. In conclusion, SPF and GF mice demonstrate divergent gains in aerobic capacity following exercise training, which can be quantified by real-time measurement of respiratory rate using a forced treadmill test.

P434 Optimizing the Glass Bead Sterilization Protocol Focusing on Removal of Organic and Bacterial Intraoperative Contamination

K Lewy*, J Bova, R Rose, TV Vemulpalli

Comparative Medicine, Texas A&M, Bryan, TX

No standard glass bead sterilization (GBS) protocol exists to effectively sterilize rodent surgical tools after heavy bacterial exposure, (e.g., cecal contamination). Various detergents are used to remove gross debris from surgical tools. We hypothesized that adding a detergent to GBS protocols will enhance removal of gross debris and potential bacterial nidi for intraoperative patient contamination. This hypothesis was tested by adding either a multi-enzyme detergent, neutral pH detergent, or chlorohexidine scrub step before GBS of forceps or needle drivers exposed to cecal contents. We modeled intraoperative contamination by humanely euthanizing mice (mixed sex, predominantly C57/BL6) via CO2 inhalation and exposing sets of forceps and needle drivers to the cecal contents for 3 minutes. Immediately after, tools were wiped several times with a paper towel. The contaminated tips were soaked in either a multi-enzyme or neutral pH detergent (T = 5min), chlorohexidine scrub (T = 2 min), or no pretreatment solution (control). Tools (all treatment groups) were then scrubbed using a clean brush. The control tools were briefly soaked in saline before scrubbing. After rinsing with sterile water, all tools were exposed to GBS for 60 seconds at 500 °F. Tool sets were then swabbed for bacterial culturing. Swabs were plated onto either sheep blood agar (n=23) or chocolate agar (n=20) for aerobic culturing or Brucella agar (n=20) for anaerobic culturing. A subset of tools was sampled to determine if organic material was present after treatment using an ATP luminometer (n=21). To date, no growth has been found on any sheep blood or Brucella agar plates. Two out of twenty forceps in the control group yielded growth on chocolate agar, but all other tools from all groups did not. The neutral pH detergent group yielded no test-positive tools via luminometer, while the multienzyme detergent group yielded a single test-positive tool. The number of tools testing ATP-positive in the chlorhexidine and control groups were significantly higher (n = 4 for each). Though each group represents a significant improvement of GBS protocols, both detergent groups were superior for their lack of positive bacterial culturing and limited ATP-swabbing positive results when compared to GBS alone.
P435 Assessing Chronic Stress in Cats: Analytic Validation of an Assay to Measure Hair Cortisol

T Lamon*, 1, J Lidbury1, C Budke2

1Veterinary Integrative Biosciences, Texas A&M University, College Station, TX; 2Small Animal Clinical Sciences, Texas A&M University, College Station, TX

Evaluating stress in shelter and institutionally owned cats is important to help guide improvements in their welfare and environment. Measuring cortisol levels is the gold standard for assessing stress in most mammals. Acute stress is typically assessed by measuring cortisol in feces or urine, while hair cortisol concentrations are used to evaluate chronic stress. Although there are many available methods for measuring cortisol, few are validated for use in cats. We evaluated the utility of a commercially available enzyme-linked immunosorbent assay (ELISA) kit designed for human saliva for measuring hair cortisol concentrations in cats. Hair samples were collected from 29 cats representing two populations (a local shelter and institutionally owned) and cortisol was extracted. Analytic validation of the ELISA was assessed via linearity through serial dilution of samples and the calculation of the observed to expected ratio (O/E). Accuracy was demonstrated via spiked recovery and the associated O/E. Target acceptance criteria for the O/E were 80-120%. Intra- and inter-assay precision were determined through calculation of the coefficient of variation (%CV; target <10%). O/E for linearity of the ELISA was 81.5-119.0%. O/E for spiked recovery was 80.3-98.4%. The %CVs for intra- and inter-assay variability ranged from 6.4% to 9.5% and 5.4% to 14.6%, respectively. We found no significant difference in hair cortisol concentrations with the ELISA between the two populations. We demonstrated that this ELISA is an analytically valid method for measuring hair cortisol concentrations in cats. Measurement of cortisol in hair samples could provide a non-invasive method to monitor chronic stress and acclimation in cats that live in confinement for prolonged periods. Further studies are needed to clinically validate this biomarker.

P436 Grinding Much? Does Grinding Rodent Feed Pellets Improve the Sensitivity of Microbial Testing?

J Weeks*, J Locklear, TE Whiteside, DM Kurtz

National Institute of Environmental Health Sciences, Research Triangle Park, NC

The US Food and Drug Administration (FDA) and the Department of Agriculture (USDA) both recommend the grinding or stomaching of food for human consumption prior to testing for Salmonella isolation. The Quality Assurance Laboratory (QAL) routinely tests all rodent feed for Salmonella, and for total microbial load prior to use. The QAL also tests sterilized, pelleted rodent feed to assure proper autoclavable function. Currently, the QAL cultures pellets in the thioglycolate broth that sits stationary in the incubator for seven days. Under these conditions, a natural ingredient in rodent feed allows for a direct numerical comparison of bacterial present without the need to count colonies on agar. Microbial testing sensitivity is improved when the feed pellets are ground and re-suspended in thioglycolate broth. Ground feed does not usual break down thoroughly thus possibly preventing the detection of viable microbes at the center of the pellet. The purpose of this study was to determine if grinding pelleted rodent feed improves the sensitivity of microbial detection. Our study compared bacterial growth from an autoclaved, natural ingredient, rodent feed (NIH-31) processed as intact pellets or ground. We used two different procedures to evaluate potential bacterial presence. The first was the total bacterial plate count via the pour plate method. This method allows for a direct numerical comparison of bacterial present between the two feed matrices (ground vs pelleted). The second procedure was the detection of culturable bacteria through thioglycolate enrichment broth for seven days at 37°C followed by subculturing onto blood agar plates aerobically and anaerobically. This allows for heat damaged bacteria that survived the autoclaving process an opportunity to repair and restart the active growth. The total aerobic bacterial count was below the maximum concentration level of 200,000 CFU/g for the unautoclaved and 0 CFU/g for the autoclaved pelleted and ground NIH-31 diet. After culturing the pelleted and the ground diet in thioglycolate broth, there was no difference in the microbiological counts. All samples were negative for microbial growth. These results indicate that grinding the autoclaved rodent feed prior to microbial testing does not improve the testing sensitivity, thus reducing the labor, time and handling contamination risk when testing for sterility.

P437 Assessing Loss of Righting Reflex Induced by Exposure to Carbon Dioxide Gas in Three Mouse Strains

BA Munro*, 1, DR Merenick1, JM Gee1, D Pang1,2

1Veterinary Clinical and Diagnostic Sciences, University of Calgary, Calgary, Canada; 2Clinical Sciences, Universite de Montreal, Calgary, Canada; 3University of Guelph, Guelph, Canada

The use of CO₂ gas to euthanize laboratory rodents is a common technique, though there are concerns that nociception (at a CO₂ concentration of ≥ 37% in rats) and pain (≥ 32.5% CO₂ in humans) may occur. Whether rodents are conscious at CO₂ concentrations associated with nociception and pain is unknown. The loss of righting reflex (LORR) test was used as a proxy to identify loss of consciousness in 3 mouse strains exposed to CO₂ (C57Bl/6; 31.8 ± 6.9g, CD1; 31.5 ± 4.2g and 129P3J; 20.8 ± 3.5g, 16 females and 16 males per strain). A custom built, motor-driven, rotating cylinder was used to assess LORR at increasing concentrations of CO₂. Following rotation into dorsal recumbency, two different LORR testing methods were assessed: 1-Paw assessment (righting reflex present if animal contacted the cylinder with 1 paw) and 4-Paw assessment (righting reflex present if animal contacted the cylinder with 4 paws). LORR data were analyzed with Probit regression and strain dose response curves compared using 1-way ANOVA with a Tukey correction. EC₉₅ values (CO₂ concentration where 95% of the population could be expected to achieve LORR) for 1-Paw assessment were: C57Bl/6; 30.7% (28.3-34.9) (median, 95% confidence interval), CD1; 26.2% (25.4-27.3), 129P3J; 20.1% (19.8-20.7).
The EC₉⁵ for C57BL/6 mice was greater than for 129P3J mice (P = 0.0007). 4-Paw EC₉⁵ values were: C57BL/6; 22.8% (21.9-24.1), CD1; 25.3% (24.6-26.2), 129P3J; 20.1% (19.7-20.7). 129P3J mice had lower EC₉⁵ values than CD1 mice (P < 0.0001). No significant difference was found between other strains (P > 0.05) in 1-Paw or 4-Paw assessment. Only C57BL/6 mice showed a difference in 1-Paw vs 4-Paw methods (P = 0.024). These results indicate a greater potential for nociception and pain before unconsciousness is induced during CO₂ euthanasia in C57BL/6 animals.

P438 Standardized Loss of Righting Reflex Method to Identify Carbon Dioxide Gas Concentrations Inducing Unconsciousness in Sprague-Dawley and Long-Evans Rats

DR Merenick¹, BA Munro¹, JM Gee², D Pang¹,³

¹Veterinary Clinical and Diagnostic Sciences, University of Calgary, Calgary, Canada; ²University of Guelph, Guelph, Canada; ³Clinical Sciences, Universite de Montreal, Saint Hyacinthe, Canada

Euthanasia of laboratory rats is commonly performed using an overdose of CO₂ gas. Exposure to CO₂ gas is associated with aversion in rats, with the potential for nociception. It is unclear if unconsciousness as a result of CO₂ exposure occurs at concentrations below those associated with nociception (approximately 37%). A standardized loss of righting reflex (LORR) method, using a rotating, motorized cylinder, was applied to identify CO₂ concentrations associated with unconsciousness in two rat strains (Sprague-Dawley, 316.5 ± 73.6g [18 females, 10 males]; Long-Evans, 249.7 ± 48.3g [14 females, 14 females]). Animals were paired or group housed under controlled conditions with experiments performed during the lights on period. The order of animal use was randomized, and experimenters were unaware of animal identification. At the end of the experiment, CO₂ concentration was increased while animals remained unconscious, until death occurred. LORR was defined as no paws in contact with the cylinder for 15 seconds after rotation into dorsal recumbency. Data were analyzed with Probit regression and dose response curves plotted. Curves were compared with a two-tailed t test and p < 0.05 considered significant. Values of EC₉⁵ for LORR were 35.0% (34.0 – 36.5%, median, 95% confidence interval) for Sprague-Dawley, and 29.2% (20.0 – 31.5%) for Long-Evans, with a significant difference between strains (p < 0.05), but no difference between sexes (p > 0.05). These results suggest a potential for unconsciousness to occur before nociception during CO₂ gas exposure.

P439 Etomidate Effectively Euthanizes Zebrafish (Danio rerio)

K Schwartz¹, C Pucharinsak¹, KA Byrd¹, K Jampachaisri¹, DK Chu¹, M Huss¹, PE Sharp¹

¹Stanford, Palo Alto, CA; ²University of California, Merced, CA; ³Naresuan University, Muang District, Phitsanulok, Thailand

Zebrafish (Danio rerio) represent one of the world’s most commonly used laboratory species. The leading methods of euthanizing zebrafish (MS-222 and rapid cooling) have many drawbacks including human safety, difficulty in preparation, and questionable pain/distress they cause the fish. Here we assessed the efficacy of an injectable anesthetic, etomidate, in euthanizing zebrafish. The aims were to investigate effectiveness of 2 different etomidate concentrations in euthanizing zebrafish and to see effects of 2 different immersion densities. Aim 1 - Fish (n=10 fish/group) were randomly assigned to 30-min immersion in 1 of 2 treatment groups: 6 (Eto-6) or 10 (Eto-10) mg/L etomidate. All fish were video recorded throughout the procedure and scored by 3 blinded observers experienced with zebrafish euthanasia. Parameters monitored included: 1) time to onset of anesthesia (loss of righting reflex, LORR); 2) respiratory arrest (cessation of operculation, COO); 3) aversive behaviors (erratic movement, hyperlocomotion, piping at the surface, twitching). Each fish was immersed in its assigned preparation for 30 min and then removed by net and transferred to a recovery tank. In recovery tanks, fish were monitored for signs of recovery (righting, operculation, body movement, and response to tap) once every 5 min for 60 min. Successful euthanasia was defined as absent signs of recovery for at least 60 min in recovery tanks. Aim 2 – 5 or 10 fish were immersed at similar etomidate concentrations. Results – Aim 1, fish in both groups showed: 1) similar time to LORR (1±0.5 min); 2) similar time to COO (2±0.6 min); 3) no aversive behaviors were noted. In recovery tanks, there were no signs of recovery noted in all fish. Fish in both groups were effectively euthanized. Aim 2, There were no differences in immersion density of fish. This study indicates that 6 or 10 mg/L etomidate effectively euthanizes zebrafish.

P440 Validation of a Fecal Corticosterone Metabolite Immunoassay to Assess Changes in Basal Stress in the Laboratory Zebra Finch (Taeniopygia guttata)

GLAS: Yes AG Backx¹, A Wu¹, MS Fee², N Fabian¹

¹Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA; ²Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA

Corticosterone, the primary glucocorticoid in birds, is released in response to stress, and its measurement can provide insight into animal physiology and welfare. Direct corticosterone
measurements require blood samples; however, basal levels are difficult to determine accurately due to the stress associated with blood collection. Corticosterone metabolites are excreted in the feces, making fecal measurements a non-invasive refinement that may more accurately assess basal corticosterone, as restraint is avoided. Fecal corticosterone metabolites have been measured in many vertebrates, but antibody cross-reactivity with these metabolites must be validated for each species. Such validation has not been performed in zebra finches (Taeniopygia guttata), an important laboratory animal model. To validate a commercially available corticosterone ELISA kit in healthy, adult male zebra finches (4 cages, n = 11–14 birds/cage), we used two variations of a “capture/restraint” stress method, either via an established protocol with an opaque cotton bag or a modified protocol with an extended hand-capture and new home cage. Fresh basal fecal samples were collected, then each bird was hand-caught, examined, and restrained. Pooled post-restraint samples were collected at 1, 2, 3, and 5.5 hours. Approximately 30 droppings/cage were collected and pooled at each timepoint. There was no significant difference in the fecal corticosterone metabolite elevation between the two stress methods (two-way ANOVA, time*method, p = 0.61). Results were combined and compared to unstressed, time-matched controls. There was a significant increase from baseline at 2 hours, and a return to baseline by 3 hours (two-way ANOVA, Tukey HSD, p < 0.001), demonstrating that the ELISA can detect increased fecal corticosterone metabolites resulting from physiological stress in male laboratory zebra finches. We also assessed regression curves of a dilution series, which demonstrated parallelism with the kit-provided standard curve (ANOVA, p = 0.064), thus showing robust metabolite detection and quantification within the log-logit linear range. These results demonstrate that fecal corticosterone metabolite ELISA can be used as a reliable, non-invasive test to monitor stress in adult male zebra finches.

P441 LINE Transposition into Murine Thyroglobulin Results in Congenital Thyroid Dysplasia

BM Smits1, W Bailey1, Z Erdos2, J Gaspar2, W Glaab2, S Kuruvilla2, P Lane2, C Regan2, T Rosahl2, D Thudium2, J Wang2, M MacGowan1, H Multari1, C Cumo1, A Navis2, T Forest1

1Taconic Biosciences, Rensselaer, NY; 2Merck, Rahway, NJ

C57BL/6 is one of the most used mouse strains in biomedical research. C57BL/6 substrains maintained at different facilities acquire spontaneous mutations, which could have phenotypic consequences. In this study we used a variety of genomic technologies to test the hypothesis that an unexpected histological finding of the thyroid gland in our wildtype C57BL/6NTac strain is caused by a new spontaneous mutation. Whole genome sequencing analysis identified a spontaneous mutation caused by transposition of a L1 long interspersed nuclear element (LINE), which inserted into an intron of the Thyroglobulin (Tg) gene. RNAseq analysis of the thyroid transcriptome of homozygotes suggested that the presence of the LINE interferes with splicing, resulting in exon 26 being excluded from most Tg transcripts, which causes omission of 61 amino acids from the affected protein product. This allele has been designated TgΔexon26-Tac. The phenotype is inherited in an autosomal dominant manner with affected mice exhibiting thyroid follicular cell dysplasia that progressed to thyroid adenoma by 12 months of age with incomplete penetrance. Consistent with previous descriptions of thyroid dysplasia, the cytoplasm of thyroid follicular cells stained positively by immunohistochemistry with an anti-Tg antibody and the endoplasmic reticulum was dilated on ultrastructural examination. Body size and temperature were not altered, and serum thyroid hormone measurements revealed that the mutation does not affect serum T3 levels, but has a small effect on serum T4 levels at 10-16 weeks and 12 months of age. The results of this study identify the arm domain of Tg as important for its proper cellular distribution. The mouse genome contains a significant amount of retrotransposon DNA. When a LINE changes locations through retro-transposition in a germ cell, this introduces a new germ line spontaneous mutation, which can propagate in a breeding colony when going unnoticed. This study represents a rare example of an unexpected histological observation in an inbred mouse strain resulting in the characterization of a spontaneous LINE insertional event that was causatively linked to dysregulated physiological phenotypes. The LINE has been removed from our C57BL/6NTac commercial colonies.

P442 Xenograft Tumor Growth Variability in Nude Mice Infected with Corynebacterium bovis as a Single Pathogenic Agent

AG Backx1, A Burds Connor2, TM Albers3, KS Henderson3, G Mulder4, HR Holcombe5

1Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA; 2Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA; 3Research Animal Diagnostic Services, Charles River Laboratories, Wilmington, MA

Corynebacterium bovis is a highly contagious bacterium that causes sporadic clinical disease and chronic shedding in immunocompromised mice. Natural infection has been associated with reduced xenograft success and growth parameters, with complete engraftment failure in some cases. Despite this, 74% of surveyed NCI-designated Comprehensive Cancer Centers did not test for or attempt to exclude *C. bovis*. To protect the reproducibility of ongoing cancer studies, we aimed to study the effect of *C. bovis* on xenograft success in specific pathogen free mice. Subcutaneous tumor growth was monitored in 8-week-old male and female nude (NU/NU) mice topically infected with *C. bovis* either 2–3 weeks prior to engraftment (chronically infected group) or at the time of engraftment (acutely infected group), as compared to uninfected controls (N = 5 mice per group). *C. bovis* status was verified with fecal qPCR and aerobic skin cultures. Three established human cancer cell lines were used: SISA-1, an osteosarcoma; HT-29, a colorectal adenocarcinoma; and A549, a lung carcinoma. Mouse weight and tumor volume were
monitored, and tumors were collected and weighed once the largest tumors for each cell line approached 15 mm in length. Comparisons were made between infection groups for each sex and cell line. There was no significant difference in the average tumor weights or final volumes for any of the cell lines between infection groups, however, these values trended smaller in females than males. One significant difference was seen in growth rates: HT-29-engrafted tumors grew more slowly in acutely infected males than in the chronically infected or uninfected males, though no difference was present between the HT-29-engrafted female groups. Additionally, for both males and females, the HT-29-engrafted acutely infected groups had higher variability in volume and weight than the chronically infected and uninfected groups. Our results suggest that *C. bovis* as a single pathogenic agent may have limited effect on xenograft growth. However, mouse sex and tumor phenotype are important factors, and acutely infected individuals may have more variable tumor growth. Thus, studies at risk of acute *C. bovis* infection may need larger group sizes to avoid negative impacts on study reproducibility.

P444 Can Long-term Isoflavones Intake Alter Steroid Adrenal Secretion?

S Caceres*, G Silvan, MJ Illera, B Crespo, PJ de Andres, JC Illera

Physiology, University Complutense of Madrid, Madrid, Spain

The hypothalamo-pituitary-adrenal (HPA) axis represents an important neuroendocrine system that regulates response to stress and several metabolic processes. The adrenal cortex plays an important role in these processes being stimulated by neuroendocrine signals and secreting different steroid hormones (glucocorticoids, mineralocorticoids, and androgens) which regulates essential functions of the organism. Isoflavones are estrogenic-like compounds that alter reproductive function in males decreasing circulating and testicular androgen levels. These anti-androgen effects of isoflavones can also affect the regulation of other endocrine organs. Therefore, the aim of this study is to evaluate the effects of a long-term administration of isoflavones on the adrenal cortex hormonal production and secretion in male Wistar rats administered with different doses of isoflavones. Seventy-five 60-day old adult male Wistar rats were administered orally using a buttoned cannula with saline solution (control group), low mixture of isoflavones (17 mg kg\(^{-1}\) day\(^{-1}\) genistein + 12 mg kg\(^{-1}\) day\(^{-1}\) daidzein) (low doses group), and high mixture of isoflavones (170 mg kg\(^{-1}\) day\(^{-1}\) genistein + 120 mg kg\(^{-1}\) day\(^{-1}\) daidzein) (high doses group), every day over a period of 5 months (20 weeks). Serum and adrenal levels of androstenedione (A4), dehydroepiandrosterone (DHEA), corticosterone (CT), and aldosterone (ALD) were determined by enzyme immunoassay.

The results revealed that serum and adrenal CT and ALD levels significantly decreased in low and high doses groups with respect to control, denoting an alteration of steroid adrenal secretion. Besides, serum and adrenal androgen levels were significantly increased in experimental groups with respect to control. These results suggest that the anti-androgenic effect of isoflavones promotes the adrenal androgen secretion causing the production of CT and ALD to be impaired. In conclusion, long-term exposure to isoflavones alter steroid adrenal production that may cause alterations in certain metabolic and endocrine-related processes.

P443 Longitudinal Behavioral Characterization of 5xFAD (C57BL/J6) Mice Confirms Sexual Dimorphism and Finds Novel Differences in Motivational/apathy Behaviors

VA Davis\(^{1,2}\), LJ Van Eldik\(^{1,2}\), DJ Braun\(^{1,2}\)

\(^{1}\) Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY; \(^{2}\) Neuroscience, University of Kentucky, Lexington, KY

The 5xFAD model is a commonly used transgenic mouse line co-expressing five familial Alzheimer’s disease (5xFAD) mutations that are inherited together and lead to accelerated amyloid plaque formation. Many publications report behavioral studies of 5xFAD mice; however, most of these studies test only one sex or do cross-sectional testing at a specific age. Discerning the temporal progression of AD-like learning and memory deficits in both sexes of 5xFAD mice and identifying behavioral assays that reveal subtle impairments would be useful as a guide to select appropriate ages and behavioral tests for specific research questions. Some longitudinal batteries have been reported, but they have not included frequently used water mazes. Here we describe a longitudinal battery of behavioral tests developed to chart the normal aging impairment expected in both male and female 5xFAD (C57BL/6J background) mice as compared to wildtype (WT) littermates. At approximately 9 months of age, 32 mice (evenly balanced for sex and genotype), began the first of three cycles of a 3-week battery, each cycle separated by 3 months. The battery consisted of four consecutive days of dry maze testing in week 1 (Open Field, Spontaneous Alternation, Novel Spatial Recognition, Rotarod). The following week, a 2-day 8-arm Radial Arm Water Maze (RAWM) test was done, followed by one day of Open Pool testing. The next day, mice were assessed using the Frailty Index, then individually housed with free access to running wheels for 7 days before being returned to normal housing. The resulting data provide a temporal progression of behavioral deficits in 5xFAD males and females and reveal a sexual dimorphism in behavior consistent with that seen in AD-like brain pathology, wherein females show more impairment than males at similar ages. This sexual dimorphism suggests different tests may be necessary at different ages for males and females, providing important information to investigators working with this model. This work also provides the novel incorporation of a water maze in a longitudinal study of the 5xFAD model. Interestingly, the RAWM data indicate females may express motivational/apathy behaviors sooner than in males (as measured by errors of omission).
Lower extremity trauma characterized by an open bone fracture and soft tissue damage are 4-5 times more likely to result in delayed or failed bone union. There is an unmet clinical need for a regenerative approach that can facilitate both structural and functional healing of the damaged tissue. To evaluate the therapeutic efficacy of an engineered muscle treatment in facilitating functional recovery, we developed a novel mouse model of complex bone-muscle injury which consists of a 2 mm segmental bone defect of the mid-diaphysis of the tibial shaft with a dental drill, and a 20% surgically excised muscle ablation of the tibialis anterior (TA) muscle of C57BL/6J male mice (n = 39). The injured tibias were left untreated other than being stabilized with a custom 3D printed biocompatible curved resin plate. The muscle defects received an engineered muscle construct composed of differentiated primary mouse muscle cells or were left untreated. Bone healing and muscle functional recovery were evaluated by longitudinal microCT imaging and terminal in situ muscle physiology, respectively. On day 56, tibias and TA muscles were harvested for histological analysis. The TA muscles that received engineered muscle scaffolds demonstrated an increase in TA muscle cross-sectional area (p < 0.01) and maximum contractile force (p < 0.05) compared to muscles that were left untreated, suggestive of functional myogenesis. However, decreased bone volume (p < 0.05) and mineral density (p < 0.05) of the bone defect was observed, indicating a possible compensatory mechanism between muscle-bone recovery. Interestingly, there was an increase in survival rate (improvement from 68% to 83%) and reduced limb morbidity (tissue necrosis, bone re-breakage, scabbing, reopening of wounds, etc.) of animals who received muscle treatments, which would merit removal from the study. Taken together, our findings demonstrate a regenerative relationship between muscle healing with functional limb recovery and survival, and further highlight the restorative potential of our engineered muscle approach for the treatment of complex lower extremity injuries.

P444 Regenerative Engineering of Complex Extremity Trauma

CA Alcazar\(^1\), K Habing\(^1\), Z Working\(^3\), N Willet\(^4\), A Tahayeri\(^2\), L Bertassoni\(^2\), K Nakayama\(^1\)

\(^1\)Biomedical Engineering, Oregon Health and Science University, Tigard, OR; \(^2\)Restorative Dentistry, Oregon Health and Science University, Portland, OR; \(^3\)Orthopedics and Rehabilitation, Oregon Health and Science University, Portland, OR; \(^4\)Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR

Lower extremity trauma characterized by an open bone fracture and soft tissue damage are 4-5 times more likely to result in delayed or failed bone union. There is an unmet clinical need for a regenerative approach that can facilitate both structural and functional healing of the damaged tissue. To evaluate the...
test the hypothesis that β-AR signaling impairs CD8 T cell anti-tumor immunity via impaired CD28 co-stimulation, C57BL/6j mice were either housed at TT for at least three weeks to reduce β-AR signaling or the β-AR agonist, isoproterenol (10μM), was added to cell culture media at the time of in vitro activation of T cells (and for the duration of the experiment) to induce β-AR signaling. CD8 T cells were isolated from the spleens of mice (n=2-4) housed at either ST or TT and activated in vitro with aCD3/aCD28 stimulating antibodies for up to 7 days, then analyzed via flow cytometry, RT-qPCR, western blot, or Seahorse XF. We found that increased β-AR signaling did not elicit statistically significant differences in CD28 mRNA or surface expression but did lead to increased inhibitory phosphorylation of CD28 downstream signaling targets, including Lck. Interestingly, we also show that mitochondrial respiration, known to be positively regulated by CD28 co-stimulation, is significantly increased at 48 hours post-activation in T cells isolated from TT-housed mice, compared to ST-housed mice. Our findings suggest that CD28 co-stimulation is negatively regulated by β-AR signaling, likely contributing to the impaired CD8 T cell anti-tumor immune response.

P449 Effect of Granulocyte-macrophage Colony-stimulating Factor on SARS-CoV-2 Infected hACE2 Mice

LV Kendall1, TD Boyd2, A Bosco-Lauth2, SH Sillau2, P Clarke2, KL Tyler4, H Potter1

1Laboratory Animal Resources, Colorado State, Fort Collins, CO; 2Alzheimer's and Cognition Center, University of Colorado, Aurora, CO; 3Biomedical Sciences, Colorado State University, Fort Collins, CO; 4Neurology, University of Colorado, Aurora, CO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that stimulates the production of granulocytes and macrophages. While this cytokine has been described to be upregulated in response to SARS-CoV-2 as a component of the complex cytokine response, previous studies in humans and mice infected with West Nile Virus had their clinical signs alleviated following treatment with GM-CSF. We hypothesized that GM-CSF therapy may similarly alleviate clinical signs in the human ACE2 transgenic mice inoculated with SARS-CoV-2. To this end, 30 male and female hACE2 transgenic mice were intranasally inoculated with 10^4 plaque forming units. The day after infection, mice were treated daily with either 200 μl saline (n=14) or 200 mg recombinant mouse GM-CSF (n=16) intraperitoneally. Mice were weighed daily, and clinical signs evaluated on a scale of 1 (none) to 4 (severe). Mice were euthanized if the clinical score was 4, or until 14 days post-infection. At the time of euthanasia, lung samples were collected for viral titers and histology. The plaque forming units of saline treated mice were 1.6 x 10^5 compared to 8.1 x 10^4 in GM-CSF treated mice. The histologic lung lesions were scored on a scale of 1 (mild interstitial pneumonia) to 3 (severe interstitial pneumonia). Lung lesion scores were 0.67 in saline treated mice, compared to 1.2 in GM-CSF treated mice. This is likely due to the increased cellular infiltration from the GM-CSF treatment. The mean survival of saline treated mice was 5.6 days in saline treated mice, and 7.4 days in GM-CSF mice. GM-CSF treatment increases the odds of long-term survival compared to saline by 21.2% and decreases the onset of clinical sings by 69.4%. These results demonstrate that GM-CSF treatment of hACE2 mice following SARS-CoV-2 infection results in a reduced viral titer, reduced clinical signs, and improved survival compared to saline treated mice.

P448 Eliminating Helicobacter spp. from Syrian Hamster Surrogate Breeders by Using Antibiotic Cocktail

C Chou1, Y Sung2, H Wang3, W Shih1, Y Lee1, W Hsieh1, Y Chen1, S Hung, C Wu1, Y Su1

1National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan; 2Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan

Syrian hamsters are important laboratory animals for antibody production, metabolic, cardiovascular and infectious disease studies. Since the pandemic outbreak of COVID-19, the Syrian hamster has been used as a good non-transgenic animal model for SARS-CoV2 infection research. Although Helicobacter infection rarely causes significant clinical signs in Syrian hamsters, much research has shown that some Helicobacter infections could influence the immune responses in Syrian hamsters. Therefore, it is essential to eradicate Helicobacter spp. from the breeding colony of Syrian hamsters. While, Helicobacter-free Syrian hamsters are not always commercially available, a medicated diet (Rat Helicobacter MD's™ 4 Drug Combo, BioServ) treatment has been proven to successfully eliminate Helicobacter spp. from mice and rats. Here, we modified the dosing strategy and used similar prescription to eliminate Helicobacter spp. in Syrian hamsters. In this study, four breeding pairs of 3- to 5-week-old Syrian hamsters, which were naturally infected with Helicobacter spp., were orally administrated with clarithromycin (30 mg/kg), metronidazole (20 mg/kg), and omeprazole (0.7 mg/kg) every day for 6 weeks. An additional treatment with amoxicillin (1 mg/mL) and enrofloxacin (0.1 mg/mL) in the drinking water was simultaneously conducted. The infection status of each hamster was monitored by weekly fecal sample PCR during and for 6 more weeks after the treatment. All the PCR test results were negative for Helicobacter spp. through the course of antibiotic therapy. Seven of the eight subjects remained negative at experimental endpoint. Only one male hamster was detected positive in the 12th week of experiment. Helicobacter spp. was not detected in all offspring of treated hamsters during the course of experiment. This report demonstrates that a novel antibiotic cocktail treatment could be effective to eliminate Helicobacter spp. in Syrian hamsters, and the treatment could be sufficient to establish Helicobacter spp.-free surrogate breeder colony.
P450 Early life dosing with Cholera Toxin B inhibits age-associated obesity in mice

B Varian1, K Weber1, V Farrell1, G Haner1, A Hardas2, T Poutahidis2, S Erdman1

1Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, MA; 2Faculty of Veterinary Medicine, Aristotle University, Thessaloniki, Greece

The global rise in obesity has become a concerning public health issue, associated with various inflammatory diseases including cancer and cardiovascular conditions. This study built upon the 'Hygiene Hypothesis' concept investigates the potential of microbial products such as cholera toxin B (CTB) as an early-life vaccination strategy to prevent age-associated obesity by counteracting chronic inflammation. In order to test the hypothesis that the immune effects of CTB inhibit age-associated obesity in mouse models we used 8 males and 8 females of two different genetic backgrounds of mice, CD1 outbred stock and C57BL6 inbred mice, which were susceptible to age-related weight gain. 10 µg of CTB in 0.2 mL of Phosphate Buffered Saline (PBS) or PBS sham was administered via gastric gavage 3 times every 10 days starting at 3 weeks of age until 7 weeks of age. Mice had terminal tissue collections at 6 months. In both CD1 and C57BL6 mice, early life administration of CTB resulted in a significant inhibition of age-associated obesity. Compared to control mice, CTB-treated mice displayed reduced body weight (43g to 35g in males and 36g to 30g in females, p<0.001) and abdominal fat accumulation (4.94g to 1.18g in males, p<0.001 and 18.6g to 10.27g in females, p<0.01). Histological characterization of the adipose tissue found decreased inflammatory cell accumulations, known as Crown-Like-Structures (CLS) in CTB-treated mice when compared to the control mice (18 to 1 CLS in males, p<0.0001 and 8 to 6 CLS in females, p<0.02). These results were repeated by performing adoptive cell transfer experiments in C57BL6 mice. A single cell suspension of 5x1^5 immune cells, isolated from the mesenteric lymph node of CTB-treated or control mice were injected intraperitoneally showing that the transplantation of purified immune cells were sufficient to inhibit age-associated obesity, highlighting the role of host immunity in mediating CTB's effects. Our findings demonstrate that CTB when administered in early life, inhibits age-associated obesity in mice through immunomodulatory mechanisms. This supports the hypothesis that early-life vaccination with CTB protects against developing obesity in adulthood.

P451 Hypothermia Reduces Cardiac Function in Isoflurane Anesthetized Mice

RM Cotton1, B Franco1, J Kim5, C Ruaengsri4, ED Alamaw1, T Hodge6, PE Sharp3, K Jampachaisri2, M Huss1, C Pacharinsak1

1Comparative Medicine, Stanford University, Santa Clara, CA; 2Mathematics, Naresuan University, Phitsanulok, Thailand; 3Veterinary Services, UC Merced, Merced, CA; 4Cardiothoracic Surgery, Stanford University, Stanford, CA; 5Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA; 6Veterinary Medical Center, UC San Diego, San Diego, CA

Hypothermia is one of the most common isoflurane anesthesia complications observed in mice. While hypothermia negatively impacts the cardiovascular system, the severity of hypothermia’s effect is unclear. We investigated the impact of severe hypothermia (91 °F) and moderate hypothermia (95 °F) on cardiac function in isoflurane-anesthetized mice. Using adult C57BL/6 mice (n = 6), mice were induced with isoflurane and then placed on a water-recirculating, temperature-controlled MRI tray. The cardiac MRI scan on each animal started at 98 °F (normal, baseline), then progressed to 95 °F (moderate hypothermia), and finally, 91 °F (severe hypothermia). Cardiac functions (ejection fraction, cardiac index, cardiac output, and stroke volume) were calculated. Physiological parameters (heart rate, respiratory rate, %SpO2, and body temperature) were monitored throughout. The baseline ejection fraction was 70.9 ± 2.1%. Ejection fraction in the severely hypothermic group (91 °F, 53.4 ± 2.9%) were significantly lower than the moderately hypothermic mice (95 °F, 60.8 ± 3.7%). The heart and respiratory rates in severely hypothermic mice were significantly lower than those of moderately hypothermic mice. Other cardiac or physiological parameters did not differ. These data suggest severe hypothermia compromises cardiac function to a greater degree than moderate hypothermia in isoflurane-anesthetized mice.